Advanced geospatial modeling and assessment of land degradation severity zones in India's semi-arid regions

被引:0
作者
Badapalli, Pradeep Kumar [1 ]
Nakkala, Anusha Boya [2 ]
Pujari, Padma Sree [3 ]
Gugulothu, Sakram [1 ,4 ]
Ullengula, Mamatha [1 ]
Senthamizhselvan, Shanthosh [1 ,4 ]
机构
[1] CSIR Natl Geophys Res Inst, Uppal Rd, Hyderabad 500007, Telangana, India
[2] Yogi Vemana Univ, Dept Geol, Kadapa 516005, Andhra Pradesh, India
[3] Govt Coll Autonomous, Dept Geol, Anantapur 515001, Andhra Pradesh, India
[4] Acad Sci & Innovat Res AcSIR, Ghaziabad 201002, India
关键词
Land degradation; Indices; MCDM; AHP; Remote sensing; GIS; Sustainability;
D O I
10.1007/s10661-025-13875-0
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Land degradation poses significant challenges to sustainable development, particularly in semi-arid regions where ecosystems are highly vulnerable. This study employs a cutting-edge geospatial and multi-criteria decision-making (MCDM) approach to delineate land degradation severity zones (LDSZs) in Anantapur district, India-a region characterized by persistent environmental stress. Utilizing thematic layers such as geology, geomorphology, soil properties, slope, and remote sensing indices (NDVI, MNDWI, NDSI, and LST), the study integrates high-resolution Landsat 8 OLI/TIRS (2023) and DEM datasets with local meteorological data for precise spatial analysis. The LDSZ classification identified critical degradation patterns, with river/stream/waterbody areas occupying 3.06% of the landscape and varying severity zones covering the remaining areas: very low (4.58%), low (20.56%), moderate (31.09%), high (27.62%), and very high (13.08%). Validation using the receiver operating characteristic (ROC) curve resulted in an area under the curve (AUC) value of 0.825, demonstrating the model's reliability. By synthesizing geospatial data and MCDM, this research offers a dynamic framework for mapping and quantifying land degradation. It underscores the pressing need for context-specific land management practices to mitigate severe degradation while paving the way for broader applications in other semi-arid regions. This approach represents a significant leap in assessing and addressing land degradation, providing a robust scientific basis for future interventions and policy development.
引用
收藏
页数:22
相关论文
共 66 条
[1]   An overview of land degradation, desertification and sustainable land management using GIS and remote sensing applications [J].
AbdelRahman, Mohamed A. E. .
RENDICONTI LINCEI-SCIENZE FISICHE E NATURALI, 2023, 34 (03) :767-808
[2]   Land Degradation Vulnerability Mapping in a Newly-Reclaimed Desert Oasis in a Hyper-Arid Agro-Ecosystem Using AHP and Geospatial Techniques [J].
Abuzaid, Ahmed S. ;
AbdelRahman, Mohamed A. E. ;
Fadl, Mohamed E. ;
Scopa, Antonio .
AGRONOMY-BASEL, 2021, 11 (07)
[3]   Identification of Groundwater Potential Zones Using Remote Sensing and GIS Techniques: A Case Study of the Shatt Al-Arab Basin [J].
Allafta, Hadi ;
Opp, Christian ;
Patra, Suman .
REMOTE SENSING, 2021, 13 (01) :1-28
[4]   Using Geographic Information Systems and the Analytical Hierarchy Process for Delineating Erosion-Induced Land Degradation in the Middle Citarum Sub-Watershed, Indonesia [J].
Ambarwulan, Wiwin ;
Nahib, Irmadi ;
Widiatmaka, Widiatmaka ;
Suryanta, Jaka ;
Munajati, Sri Lestari ;
Suwarno, Yatin ;
Turmudi, Turmudi ;
Darmawan, Mulyanto ;
Sutrisno, Dewayany .
FRONTIERS IN ENVIRONMENTAL SCIENCE, 2021, 9
[5]  
[Anonymous], 2018, The IPBES regional assessment report on biodiversity and ecosystem services for Asia and the Pacific
[6]   Delineation of groundwater potential zones using geospatial and MCDM approaches in urban areas of Anantapur District, AP, India [J].
Anusha, B. N. ;
Kumar, B. Pradeep ;
Rajasekhar, M. ;
Babu, K. Raghu .
URBAN CLIMATE, 2022, 46
[7]  
Anusha B. N., 2023, Geosystems and Geoenvironment, V2, DOI [10.1016/j.geogeo.2022.100131, DOI 10.1016/J.GEOGEO.2022.100131]
[8]   Algorithm for Automated Mapping of Land Surface Temperature Using LANDSAT 8 Satellite Data [J].
Avdan, Ugur ;
Jovanovska, Gordana .
JOURNAL OF SENSORS, 2016, 2016
[9]  
Badapalli PK., 2023, Aeolian desertification: Disaster with visual impact in semi-arid regions of Andhra Pradesh, DOI [10.1007/978-981-99-6729-2, DOI 10.1007/978-981-99-6729-2]
[10]   Dynamic Land Degradation Assessment: Integrating Machine Learning with Landsat 8 OLI/TIRS for Enhanced Spectral, Terrain, and Land Cover Indices [J].
Badapalli, Pradeep Kumar ;
Nakkala, Anusha Boya ;
Gugulothu, Sakram ;
Kottala, Raghu Babu .
EARTH SYSTEMS AND ENVIRONMENT, 2025, 9 (01) :315-335