Fast RNS Implementation of Elliptic Curve Point Multiplication on FPGAs

被引:0
作者
Wu, Tao [1 ]
机构
[1] Sun Yat Sen Univ, Shenzhen Res Inst, Yuehai Rd, Shenzhen 518057, Guangdong, Peoples R China
来源
JOURNAL OF SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY | 2024年 / 96卷 / 11期
关键词
Residue number system; Elliptic curve cryptography; Montgomery algorithm; MODULAR MULTIPLICATION; ARCHITECTURE; ECC;
D O I
10.1007/s11265-024-01925-8
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Elliptic curve cryptography is the second most important public-key cryptography following RSA cryptography. The fundamental arithmetic of elliptic curve cryptography is a series of modular multiplications and modular additions. Usually, Montgomery algorithm is applied for modular multiplications over large integers to reduce the computational complexity. Targeting at fast elliptic curve point multiplication over prime fields a new approach in residue number system is proposed. Compared with other implementations that apply Montgomery ladder for parallel elliptic curve point multiplication, the proposed method uses a residue number system with a wide dynamic range, which supports continuous multiplications and needs only one RNS Montgomery multiplication to bring down the temporary results to valid range. Hardware implementation results demonstrate that the computation time for elliptic curve point multiplication over Fp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_p$$\end{document} can be greatly reduced, and it takes about 0.677 ms to compute one time of elliptic curve point multiplication over 384-bit prime curves in Xilinx XC6VSX475t device, costing an area of 41409 slices, 676 DSPs and 138 Brams.
引用
收藏
页码:673 / 684
页数:12
相关论文
共 34 条
  • [1] Bajard J., 2006, COMBINING MONTGOMERY
  • [2] A full RNS implementation of RSA
    Bajard, JC
    Imbert, L
    [J]. IEEE TRANSACTIONS ON COMPUTERS, 2004, 53 (06) : 769 - 774
  • [3] An RNS Montgomery modular multiplication algorithm
    Bajard, JC
    Didier, LS
    Kornerup, P
    [J]. IEEE TRANSACTIONS ON COMPUTERS, 1998, 47 (07) : 766 - 776
  • [4] BARRETT P, 1987, LECT NOTES COMPUT SC, V263, P311
  • [5] Binary-Ternary Plus-Minus Modular Inversion in RNS
    Bigou, Karim
    Tisserand, Arnaud
    [J]. IEEE TRANSACTIONS ON COMPUTERS, 2016, 65 (11) : 3495 - 3501
  • [6] Bigou K, 2013, LECT NOTES COMPUT SC, V8086, P233, DOI 10.1007/978-3-642-40349-1_14
  • [7] A new Systolic architecture for modular division
    Chen, Gang
    Bai, Guoqiang
    Chen, Hongyi
    [J]. IEEE TRANSACTIONS ON COMPUTERS, 2007, 56 (02) : 282 - 286
  • [8] Cheung RCC, 2011, LECT NOTES COMPUT SC, V6917, P421, DOI 10.1007/978-3-642-23951-9_28
  • [9] Chung SC, 2012, IEEE INT SYMP CIRC S, P1456
  • [10] Efficient RNS Implementation of Elliptic Curve Point Multiplication Over GF(p)
    Esmaeildoust, Mohammad
    Schinianakis, Dimitrios
    Javashi, Hamid
    Stouraitis, Thanos
    Navi, Keivan
    [J]. IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2013, 21 (08) : 1545 - 1549