Variational techniques have long been at the heart of atomic, solid-state, and many-body physics. They have recently extended to quantum and classical machine learning, providing a basis for representing quantum states via neural networks. These methods generally aim to minimize the energy of a given ansatz, though open questions remain about the expressivity of quantum and classical variational ans & auml;tze. The connection between variational techniques and quantum computing, through variational quantum algorithms, offers opportunities to explore the quantum complexity of classical methods. We demonstrate how the concept of non-stabilizerness, or magic, can create a bridge between quantum information and variational techniques and we show that energy accuracy is a necessary but not always sufficient condition for accuracy in non-stabilizerness. Through systematic benchmarking of neural network quantum states, matrix product states, and variational quantum methods, we show that while classical techniques are more accurate in non-stabilizerness, not accounting for the symmetries of the system can have a severe impact on this accuracy. Our findings form a basis for a universal expressivity characterization of both quantum and classical variational methods.