Asymptotic behavior of laminated beams with Kelvin-Voigt damping

被引:0
作者
Victor R. Cabanillas [1 ]
Teófanes Quispe Méndez [2 ]
机构
[1] Universidad de Lima, Programa de Estudios Generales, Avenida Javier Prado Este 4600, Lima, Lima
[2] Universidad Nacional Mayor de San Marcos, Facultad de Ciencias Matemáticas, Calle Germán Amézaga 375, Lima, Lima
关键词
35B35; 35B40; 35Q93; 93D20; 93Q74;
D O I
10.1007/s11565-024-00559-9
中图分类号
学科分类号
摘要
This work considers a one-dimensional system consisting of two identical Timoshenko beams. The model considers that an adhesive layer of small thickness joins the two surfaces, thus producing an interfacial slip under homogeneous mixed Neumann-Dirichlet-Dirichlet boundary conditions. We introduce a Kelvin-Voigt type damping into the rotation equation, and we study the well-posedness of the problem and the asymptotic behavior of the solutions using techniques from the semigroup theory of linear operators and the frequency domain method. When the wave’s propagation speeds are equal in both beams, we show that the Kelvin-Voigt dissipative term acting on the rotation equation is sufficient to obtain the exponential decay of the solutions while maintaining the structural dissipation characteristic of the model. When these propagation speeds differ, we show the lack of exponential decay and prove that the solutions decay polynomially with a decay rate of t-12. We prove, finally, that this decay rate is optimal. © The Author(s) under exclusive license to Università degli Studi di Ferrara 2024.
引用
收藏
相关论文
共 35 条
  • [1] Alves M.S., Gamboa P., Gorain G.C., Rambaud A., Vera O., Asymptotic behavior of a flexible structure with Cattaneo type of thermal effect, Indag. Math, 27, 3, pp. 821-834, (2016)
  • [2] Alves M.S., Monteiro R.N., Exponential stability of laminated Timoshenko beams with boundary internal controls, J. Math. Anal. Appl, (2020)
  • [3] Ammari K., Liu Z., Shel F., Stability of the wave equations on a tree with local Kelvin-Voigt damping, Semigroup Forum, 100, 2, pp. 364-382, (2020)
  • [4] Ammari K., Hassine F., Robbiano L., Stabilization for the wave equation with singular Kelvin-Voigt damping, Arch. Ration. Mech. Anal, 236, pp. 577-601, (2020)
  • [5] Ammari K., Hassine F.
  • [6] Ammari K., Shel F., Stability of elastic multi-link structures, (2022)
  • [7] Apalara T.A., Raposo C.A., Nonato C.A., Exponential stability for laminated beams with a frictional damping, Arch. Math, 114, pp. 471-480, (2020)
  • [8] Azvine B., Tomlinson G.R., Wynne R.J., Initial studies in the use of active constrained layer damping for con trolling resonant vibration, Proceedings of the SPIE Conference on Smart Structures and Materials, (1994)
  • [9] Borichev A., Tomilov Y., Optimal polynomial decay of functions and operator semigroups, Math. Ann, 347, pp. 455-478, (2010)
  • [10] Cabanillas V.R., Potenciano-Machado L., Quispe Mendez T., Optimal stability results for laminated beams with Kelvin-Voigt damping and delay, J. Math. Anal. Appl, (2022)