On extension of Calderon-Zygmund type singular integrals and their commutators

被引:0
作者
Bagchi, Sayan [1 ]
Garg, Rahul [2 ]
Singh, Joydwip [1 ]
机构
[1] Indian Inst Sci Educ & Res Kolkata, Dept Math & Stat, Mohanpur 741246, India
[2] Indian Inst Sci Educ & Res Bhopal, Dept Math, Bhopal 462066, India
来源
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES | 2024年 / 134卷 / 02期
关键词
Calderon-Zygmund singular integrals; commutators; Hardy space; Lipschitz space; BMO; Muckenhoupt weights; SPACES; OPERATORS;
D O I
10.1007/s12044-024-00804-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Motivated by the recent works [1, 23], we study the following extension of Calderon-Zygmund type singular integrals T(beta)f(x) = p.v. integral(n)(R) Omega(y)/|y|(n-beta) f(x - y)dy, for 0 < beta < n, and their commutators. We establish estimates of these singular integrals on Lipschitz spaces, Hardy spaces and Muckenhoupt A(p)-weighted L-p-spaces. We also establish Lebesgue and Hardy space estimates of their commutators. Our estimates are uniform in small beta, and therefore one can pass onto the limits as beta -> 0 to deduce analogous estimates for the classical Calderon-Zygmund type singular integrals and their commutators.
引用
收藏
页数:30
相关论文
共 24 条