SDePER: a hybrid machine learning and regression method for cell-type deconvolution of spatial barcoding-based transcriptomic data

被引:1
|
作者
Liu, Yunqing [1 ]
Li, Ningshan [1 ,2 ,3 ]
Qi, Ji [1 ]
Xu, Gang [1 ,4 ]
Zhao, Jiayi [1 ]
Wang, Nating [1 ]
Huang, Xiayuan [1 ]
Jiang, Wenhao [1 ]
Wei, Huanhuan [1 ,5 ]
Justet, Aurelien [5 ,6 ]
Adams, Taylor S. [5 ]
Homer, Robert [7 ]
Amei, Amei [4 ]
Rosas, Ivan O. [8 ]
Kaminski, Naftali [5 ]
Wang, Zuoheng [1 ,9 ]
Yan, Xiting [1 ,5 ]
机构
[1] Yale Sch Publ Hlth, Dept Biostat, New Haven, CT 06510 USA
[2] Shanghai Jiao Tong Univ, SJTU Yale Join Ctr Biostat & Data Sci, Sch Life Sci & Biotechnol, Dept Bioinformat & Biostat, Shanghai, Peoples R China
[3] Chinese Univ Hong Kong, Affiliated Hosp 2, Shenzhen, Guangdong, Peoples R China
[4] Univ Nevada, Dept Math Sci, Las Vegas, NV USA
[5] Yale Sch Med, Sect Pulm Crit Care & Sleep Med, New Haven, CT 06510 USA
[6] Normandie Univ, CHU Caen UNICAEN, Ctr Competences Malad Plum Rares, Serv Pneumol,CEA,CNRS,ISTCT,CERVOxy Grp,GIP CYCERO, Caen, France
[7] Yale Sch Med, Dept Pathol, New Haven, CT USA
[8] Baylor Coll Med, Dept Med, Houston, TX USA
[9] Yale Sch Med, Dept Biomed Informat & Data Sci, New Haven, CT 06510 USA
来源
GENOME BIOLOGY | 2024年 / 25卷 / 01期
基金
美国国家卫生研究院;
关键词
SINGLE-CELL; GENE-EXPRESSION; ATLAS; SEQ;
D O I
10.1186/s13059-024-03416-2
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Spatial barcoding-based transcriptomic (ST) data require deconvolution for cellular-level downstream analysis. Here we present SDePER, a hybrid machine learning and regression method to deconvolve ST data using reference single-cell RNA sequencing (scRNA-seq) data. SDePER tackles platform effects between ST and scRNA-seq data, ensuring a linear relationship between them while addressing sparsity and spatial correlations in cell types across capture spots. SDePER estimates cell-type proportions, enabling enhanced resolution tissue mapping by imputing cell-type compositions and gene expressions at unmeasured locations. Applications to simulated data and four real datasets showed SDePER's superior accuracy and robustness over existing methods.
引用
收藏
页数:28
相关论文
共 50 条
  • [11] scDeepInsight: a supervised cell-type identification method for scRNA-seq data with deep learning
    Jia, Shangru
    Lysenko, Artem
    Boroevich, Keith A.
    Sharma, Alok
    Tsunoda, Tatsuhiko
    BRIEFINGS IN BIOINFORMATICS, 2023, 24 (05)
  • [12] Evaluation of machine learning approaches for cell-type identification from single-cell transcriptomics data (vol 2021)
    Huang, Yixuan
    Zhang, Peng
    BRIEFINGS IN BIOINFORMATICS, 2021, 22 (06)
  • [13] TransCluster: A Cell-Type Identification Method for single-cell RNA-Seq data using deep learning based on transformer
    Song, Tao
    Dai, Huanhuan
    Wang, Shuang
    Wang, Gan
    Zhang, Xudong
    Zhang, Ying
    Jiao, Linfang
    FRONTIERS IN GENETICS, 2022, 13
  • [14] A2Sign: Agnostic Algorithms for Signatures-a universal method for identifying molecular signatures from transcriptomic datasets prior to cell-type deconvolution
    Boldina, Galina
    Fogel, Paul
    Rocher, Corinne
    Bettembourg, Charles
    Luta, George
    Auge, Franck
    BIOINFORMATICS, 2022, 38 (04) : 1015 - 1021
  • [15] CASSL: A cell-type annotation method for single cell transcriptomics data using semi-supervised learning
    Seal, Dibyendu Bikash
    Das, Vivek
    De, Rajat K.
    APPLIED INTELLIGENCE, 2023, 53 (02) : 1287 - 1305
  • [16] CASSL: A cell-type annotation method for single cell transcriptomics data using semi-supervised learning
    Dibyendu Bikash Seal
    Vivek Das
    Rajat K. De
    Applied Intelligence, 2023, 53 : 1287 - 1305
  • [17] Impeller: a path-based heterogeneous graph learning method for spatial transcriptomic data imputation
    Duan, Ziheng
    Riffle, Dylan
    Li, Ren
    Liu, Junhao
    Min, Martin Renqiang
    Zhang, Jing
    BIOINFORMATICS, 2024, 40 (06)
  • [18] stAI: a deep learning-based model for missing gene imputation and cell-type annotation of spatial transcriptomics
    Zou, Guangsheng
    Shen, Qunlun
    Li, Limin
    Zhang, Shuqin
    NUCLEIC ACIDS RESEARCH, 2025, 53 (05)
  • [19] Spatial prediction of landslides using a hybrid machine learning approach based on Random Subspace and Classification and Regression Trees
    Binh Thai Pham
    Prakash, Indra
    Dieu Tien Bui
    GEOMORPHOLOGY, 2018, 303 : 256 - 270
  • [20] Improving regional climate simulations based on a hybrid data assimilation and machine learning method
    He, Xinlei
    Li, Yanping
    Liu, Shaomin
    Xu, Tongren
    Chen, Fei
    Li, Zhenhua
    Zhang, Zhe
    Liu, Rui
    Song, Lisheng
    Xu, Ziwei
    Peng, Zhixing
    Zheng, Chen
    HYDROLOGY AND EARTH SYSTEM SCIENCES, 2023, 27 (07) : 1583 - 1606