SDePER: a hybrid machine learning and regression method for cell-type deconvolution of spatial barcoding-based transcriptomic data

被引:1
|
作者
Liu, Yunqing [1 ]
Li, Ningshan [1 ,2 ,3 ]
Qi, Ji [1 ]
Xu, Gang [1 ,4 ]
Zhao, Jiayi [1 ]
Wang, Nating [1 ]
Huang, Xiayuan [1 ]
Jiang, Wenhao [1 ]
Wei, Huanhuan [1 ,5 ]
Justet, Aurelien [5 ,6 ]
Adams, Taylor S. [5 ]
Homer, Robert [7 ]
Amei, Amei [4 ]
Rosas, Ivan O. [8 ]
Kaminski, Naftali [5 ]
Wang, Zuoheng [1 ,9 ]
Yan, Xiting [1 ,5 ]
机构
[1] Yale Sch Publ Hlth, Dept Biostat, New Haven, CT 06510 USA
[2] Shanghai Jiao Tong Univ, SJTU Yale Join Ctr Biostat & Data Sci, Sch Life Sci & Biotechnol, Dept Bioinformat & Biostat, Shanghai, Peoples R China
[3] Chinese Univ Hong Kong, Affiliated Hosp 2, Shenzhen, Guangdong, Peoples R China
[4] Univ Nevada, Dept Math Sci, Las Vegas, NV USA
[5] Yale Sch Med, Sect Pulm Crit Care & Sleep Med, New Haven, CT 06510 USA
[6] Normandie Univ, CHU Caen UNICAEN, Ctr Competences Malad Plum Rares, Serv Pneumol,CEA,CNRS,ISTCT,CERVOxy Grp,GIP CYCERO, Caen, France
[7] Yale Sch Med, Dept Pathol, New Haven, CT USA
[8] Baylor Coll Med, Dept Med, Houston, TX USA
[9] Yale Sch Med, Dept Biomed Informat & Data Sci, New Haven, CT 06510 USA
来源
GENOME BIOLOGY | 2024年 / 25卷 / 01期
基金
美国国家卫生研究院;
关键词
SINGLE-CELL; GENE-EXPRESSION; ATLAS; SEQ;
D O I
10.1186/s13059-024-03416-2
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Spatial barcoding-based transcriptomic (ST) data require deconvolution for cellular-level downstream analysis. Here we present SDePER, a hybrid machine learning and regression method to deconvolve ST data using reference single-cell RNA sequencing (scRNA-seq) data. SDePER tackles platform effects between ST and scRNA-seq data, ensuring a linear relationship between them while addressing sparsity and spatial correlations in cell types across capture spots. SDePER estimates cell-type proportions, enabling enhanced resolution tissue mapping by imputing cell-type compositions and gene expressions at unmeasured locations. Applications to simulated data and four real datasets showed SDePER's superior accuracy and robustness over existing methods.
引用
收藏
页数:28
相关论文
共 50 条
  • [1] NLSDeconv: an efficient cell-type deconvolution method for spatial transcriptomics data
    Chen, Yunlu
    Ruan, Feng
    Wang, Ji-Ping
    BIOINFORMATICS, 2025, 41 (01)
  • [2] STdGCN: spatial transcriptomic cell-type deconvolution using graph convolutional networks
    Li, Yawei
    Luo, Yuan
    GENOME BIOLOGY, 2024, 25 (01):
  • [3] LETSmix: a spatially informed and learning-based domain adaptation method for cell-type deconvolution in spatial transcriptomics
    Zhan, Yangen
    Zhang, Yongbing
    Hu, Zheqi
    Wang, Yifeng
    Zhu, Zirui
    Du, Sijing
    Yan, Xiangming
    Li, Xiu
    GENOME MEDICINE, 2025, 17 (01):
  • [4] SpaDecon: cell-type deconvolution in spatial transcriptomics with semi-supervised learning
    Kyle Coleman
    Jian Hu
    Amelia Schroeder
    Edward B. Lee
    Mingyao Li
    Communications Biology, 6
  • [5] SpaDecon: cell-type deconvolution in spatial transcriptomics with semi-supervised learning
    Coleman, Kyle
    Hu, Jian
    Schroeder, Amelia
    Lee, Edward B.
    Li, Mingyao
    COMMUNICATIONS BIOLOGY, 2023, 6 (01)
  • [6] SpatialDeX Is a Reference-Free Method for Cell-Type Deconvolution of Spatial Transcriptomics Data in Solid Tumors
    Liu, Xinyi
    Tang, Gongyu
    Chen, Yuhao
    Li, Yuanxiang
    Li, Hua
    Wang, Xiaowei
    CANCER RESEARCH, 2025, 85 (01) : 171 - 182
  • [7] A Spatial Interpolation Method for Meteorological Data Based on a Hybrid Kriging and Machine Learning Approach
    Huang, Julong
    Lu, Chuhan
    Huang, Dingan
    Qin, Yujing
    Xin, Fei
    Sheng, Hao
    INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2024, 44 (15) : 5371 - 5380
  • [8] Evaluation of machine learning approaches for cell-type identification from single-cell transcriptomics data
    Huang, Yixuan
    Zhang, Peng
    BRIEFINGS IN BIOINFORMATICS, 2021, 22 (05)
  • [9] Identifying Cell-Type Specific Genes and Expression Rules Based on Single-Cell Transcriptomic Atlas Data
    Yuan, Fei
    Pan, Xiao Yong
    Zeng, Tao
    Zhang, Yu-Hang
    Chen, Lei
    Gan, Zijun
    Huangs, Tao
    Cai, Yu-Dong
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2020, 8 (08):
  • [10] Machine Learning on Large-Scale Proteomics Data Identifies Tissue and Cell-Type Specific Proteins
    Claeys, Tine
    Menu, Maxime
    Bouwmeester, Robbin
    Gevaert, Kris
    Martens, Lennart
    JOURNAL OF PROTEOME RESEARCH, 2023, 22 (04) : 1181 - 1192