NIRSpredict: a platform for predicting plant traits from near infra-red spectroscopy

被引:0
作者
Vaillant, Axel [1 ]
Beurier, Gregory [2 ]
Cornet, Denis [2 ]
Rouan, Lauriane [2 ]
Vile, Denis [3 ]
Violle, Cyrille [1 ]
Vasseur, Francois [1 ]
机构
[1] Univ Montpellier, CEFE, CNRS, EPHE,IRD, Montpellier, France
[2] Univ Montpellier, UMR AGAP Inst, CIRAD, Inst Agro,INRAE, F-34398 Montpellier, France
[3] Univ Montpellier, Inst Agro, LEPSE, INRAE, Montpellier, France
来源
BMC PLANT BIOLOGY | 2024年 / 24卷 / 01期
基金
欧洲研究理事会;
关键词
<italic>Arabidopsis thaliana</italic>; Functional traits; Genetic variability; Machine learning; Phenomics; Secondary metabolites; Trait prediction; NIRS; REFLECTANCE; CHEMOMETRICS; STRATEGIES;
D O I
10.1186/s12870-024-05776-0
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Near-infrared spectroscopy (NIRS) has become a popular tool for investigating phenotypic variability in plants. We developed the Shiny NIRSpredict application to get predictions of 81 Arabidopsis thaliana phenotypic traits, including classical functional traits as well as a large variety of commonly measured chemical compounds, based from near-infrared spectroscopy values based on deep learning. It is freely accessible at the following URL: https://shiny.cefe.cnrs.fr/NirsPredict/.NIRSpredict has three main functionalities. First, it allows users to submit their spectrum values to get the predictions of plant traits from models built with the hosted A. thaliana database. Second, users have access to the database of traits used for model calibration. Data can be filtered and extracted on user's choice and visualized in a global context. Third, a user can submit his own dataset to extend the database and get part of the application development.NIRSpredict provides an easy-to-use and efficient method for trait prediction and an access to a large dataset of A. thaliana trait values. In addition to covering many of functional traits it also allows to predict a large variety of commonly measured chemical compounds. As a reliable way of characterizing plant populations across geographical ranges, NIRSpredict can facilitate the adoption of phenomics in functional and evolutionary ecology.
引用
收藏
页数:12
相关论文
共 59 条
  • [1] 1,135 Genomes Reveal the Global Pattern of Polymorphism in Arabidopsis thaliana
    Alonso-Blanco, Carlos
    Andrade, Jorge
    Becker, Claude
    Bemm, Felix
    Bergelson, Joy
    Borgwardt, Karsten M.
    Cao, Jun
    Chae, Eunyoung
    Dezwaan, Todd M.
    Ding, Wei
    Ecker, Joseph R.
    Exposito-Alonso, Moises
    Farlow, Ashley
    Fitz, Joffrey
    Gan, Xiangchao
    Grimm, Dominik G.
    Hancock, Angela M.
    Henz, Stefan R.
    Holm, Svante
    Horton, Matthew
    Jarsulic, Mike
    Kerstetter, Randall A.
    Korte, Arthur
    Korte, Pamela
    Lanz, Christa
    Lee, Cheng-Ruei
    Meng, Dazhe
    Michael, Todd P.
    Mott, Richard
    Muliyati, Ni Wayan
    Nagele, Thomas
    Nagler, Matthias
    Nizhynska, Viktoria
    Nordborg, Magnus
    Novikova, Polina Yu.
    Pico, F. Xavier
    Platzer, Alexander
    Rabanal, Fernando A.
    Rodriguez, Alex
    Rowan, Beth A.
    Salome, Patrice A.
    Schmid, Karl J.
    Schmitz, Robert J.
    Seren, Umit
    Sperone, Felice Gianluca
    Sudkamp, Mitchell
    Svardal, Hannes
    Tanzer, Matt M.
    Todd, Donald
    Volchenboum, Samuel L.
    [J]. CELL, 2016, 166 (02) : 481 - 491
  • [2] Near infrared spectroscopy coupled with chemometric algorithms for predicting chemical components in black goji berries (Lycium ruthenicum Murr.)
    Arslan, Muhammad
    Zou Xiaobo
    Hu Xuetao
    Tahir, Haroon Elrasheid
    Shi, Jiyong
    Khan, Moazzam Rafiq
    Zareef, Muhammad
    [J]. JOURNAL OF NEAR INFRARED SPECTROSCOPY, 2018, 26 (05) : 275 - 286
  • [3] Application of deep learning and near infrared spectroscopy in cereal analysis
    Ba Tuan Le
    [J]. VIBRATIONAL SPECTROSCOPY, 2020, 106
  • [4] Comparison of linear and nonlinear calibration models based on near infrared (NIR) spectroscopy data for gasoline properties prediction
    Balabin, Roman M.
    Safieva, Ravilya Z.
    Lomakina, Ekaterma I.
    [J]. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2007, 88 (02) : 183 - 188
  • [5] Chemometric Methods for Spectroscopy-Based Pharmaceutical Analysis
    Biancolillo, Alessandra
    Marini, Federico
    [J]. FRONTIERS IN CHEMISTRY, 2018, 6
  • [6] Detection of the metabolic response to drought stress using hyperspectral reflectance
    Burnett, Angela C.
    Serbin, Shawn P.
    Davidson, Kenneth J.
    Ely, Kim S.
    Rogers, Alistair
    [J]. JOURNAL OF EXPERIMENTAL BOTANY, 2021, 72 (18) : 6474 - 6489
  • [7] High-throughput Phenotyping and Genomic Selection: The Frontiers of Crop Breeding Converge
    Cabrera-Bosquet, Llorenc
    Crossa, Jose
    von Zitzewitz, Jarislav
    Dolors Serret, Maria
    Luis Araus, Jose
    [J]. JOURNAL OF INTEGRATIVE PLANT BIOLOGY, 2012, 54 (05) : 312 - 320
  • [8] Near-Infrared Reflectance Spectroscopy (NIRS) Assessment of δ18O and Nitrogen and Ash Contents for Improved Yield Potential and Drought Adaptation in Maize
    Cabrera-Bosquet, Llorenc
    Sanchez, Ciro
    Rosales, Aldo
    Palacios-Rojas, Natalia
    Luis Araus, Jose
    [J]. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2011, 59 (02) : 467 - 474
  • [9] The Complex Genetic Architecture of the Metabolome
    Chan, Eva K. F.
    Rowe, Heather C.
    Hansen, Bjarne G.
    Kliebenstein, Daniel J.
    [J]. PLOS GENETICS, 2010, 6 (11):
  • [10] Chang W., 2023, shiny: Web Application Framework for R