Classification of radiographic and non-radiographic axial spondylarthritis in pelvic radiography using deep convolution neural network models

被引:0
作者
Kahveci, Abdulvahap [1 ,4 ]
Alcan, Veysel [2 ]
Ucar, Murat [3 ]
Gumustepe, Alper [4 ]
Bilgin, Esra [5 ]
Sunar, Ismihan [4 ]
Ataman, Sebnem [4 ]
机构
[1] Kastamonu Training & Res Hosp, Rheumatol Clin, Floor 1, TR-37150 Kastamonu, Turkiye
[2] Tarsus Univ, Dept Elect & Elect Engn, Mersin, Turkiye
[3] Izmir Bakircay Univ, Dept Comp Engn, I?zmir, Turkiye
[4] Ankara Univ, Sch Med, Dept Phys Med & Rehabil, Div Rheumatol, Ankara, Turkiye
[5] Ankara City Hosp, Rheumatol Clin, Ankara, Turkiye
来源
CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS | 2025年 / 28卷 / 03期
关键词
Axial spondyloarthritis; Machine learning; Artificial intelligence; Deep learning; Pelvic radiography; Sacroiliac joints; SACROILIITIS; SPONDYLOARTHRITIS; DIAGNOSIS;
D O I
10.1007/s10586-024-04920-7
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Discriminating radiographic axial spondyloarthritis (r-axSpA) from nonradiographic axial spondyloarthritis (nr-axSpA) using pelvic radiographs is challenging, especially for inexperienced clinicians. This study aims to perform deep convolution neuronal network (CNN) models to aid in this diagnostic challenge by using their radiographs. Six-hundred sacroiliac joint exams (300 pelvic radiographs) of patients from axSpA cohort were enrolled (screened between Jan 2010 and Jan 2020). All radiographs were examined and graded by a blinded expert rheumatologist. Four CNN models (VGG16, ResNet, DenseNet, and MobileNet) were proposed by combining them with the YOLOv7 object detection algorithm to mark the sacroiliac joints. The classification results of CNNs were evaluated by performance metrics [accuracy, AUROC (area under the receiver operating characteristic curve)]. The VGG16 model with the YOLOv7 algorithm yielded the best performance [accuracy of 83.8% (95% CI; 73.3-92.9%)]. The accuracy values of other models were 70.7% (58.3-82.7%), 77.1% (65.1-87.3%), and 71.8% (59.0-83.1%) for ResNet, DenseNet, and MobileNet, respectively. In the ROC analysis, the AUC value of the VGG16 model (AUC = 0.882) was higher than other CNNs (AUCs = 0.836, 0.808, and 0.787; DenseNet, ResNet, and MobileNet, respectively). This paper revealed deep learning architectures were able to differentiate r-axSpA from nr-axSpA on pelvic radiographs. Hereby, these models might be used as a clinical decision support system in clinical practice.
引用
收藏
页数:11
相关论文
共 40 条
  • [21] Comprehensive AI-assisted tool for ankylosing spondylitis based on multicenter research outperforms human experts
    Li, Hao
    Tao, Xiang
    Liang, Tuo
    Jiang, Jie
    Zhu, Jichong
    Wu, Shaofeng
    Chen, Liyi
    Zhang, Zide
    Zhou, Chenxing
    Sun, Xuhua
    Huang, Shengsheng
    Chen, Jiarui
    Chen, Tianyou
    Ye, Zhen
    Chen, Wuhua
    Guo, Hao
    Yao, Yuanlin
    Liao, Shian
    Yu, Chaojie
    Fan, Binguang
    Liu, Yihong
    Lu, Chunai
    Hu, Junnan
    Xie, Qinghong
    Wei, Xiao
    Fang, Cairen
    Liu, Huijiang
    Huang, Chengqian
    Pan, Shixin
    Zhan, Xinli
    Liu, Chong
    [J]. FRONTIERS IN PUBLIC HEALTH, 2023, 11
  • [22] Deep learning algorithms for magnetic resonance imaging of inflammatory sacroiliitis in axial spondyloarthritis
    Lin, Karina Ying Ying
    Peng, Cao
    Lee, Kam Ho
    Chan, Shirley Chiu Wai
    Chung, Ho Yin
    [J]. RHEUMATOLOGY, 2022, 61 (10) : 4198 - 4206
  • [23] Differences between radiographic and non-radiographic axial spondyloarthritis patients in a Mexican cohort
    Londono, John
    Pacheco-Tena, Cesar
    Santos, Ana Maria
    Cardiel, Mario Humberto
    Rodriguez-Salas, Gustavo
    Rueda, Igor
    Arias-Correal, Sofia
    Mesa, Cristian
    Juliana, Mantilla Marta
    Santacruz, Juan Camilo
    Rueda, Juan Camilo
    Vargas-Alarcon, Gilberto
    Burgos-Vargas, Ruben
    [J]. SCIENTIFIC REPORTS, 2024, 14 (01):
  • [24] Smith LN, 2018, Arxiv, DOI [arXiv:1803.09820, DOI 10.48550/ARXIV.1803.09820]
  • [25] COVID-19: Automatic detection from X-ray images by utilizing deep learning methods
    Nigam, Bhawna
    Nigam, Ayan
    Jain, Rahul
    Dodia, Shubham
    Arora, Nidhi
    Annappa, B.
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2021, 176
  • [26] Detection of radiographic sacroiliitis with an artificial neural network in patients with suspicion of axial spondyloarthritis
    Poddubnyy, Denis
    Proft, Fabian
    Hermann, Kay-Geert A.
    Spiller, Laura
    Niehues, Stefan M.
    Adams, Lisa C.
    Protopopov, Mikhail
    Rodriguez, Valeria Rios
    Muche, Burkhard
    Rademacher, Judith
    Torgutalp, Murat
    Bressem, Keno K.
    Vahldiek, Janis L.
    [J]. RHEUMATOLOGY, 2021, 60 (12) : 5868 - 5869
  • [27] Machine Learning Pipeline for Predicting Bone Marrow Edema Along the Sacroiliac Joints on Magnetic Resonance Imaging
    Roels, Joris
    De Craemer, Ann-Sophie
    Renson, Thomas
    de Hooge, Manouk
    Gevaert, Arne
    van den Berghe, Thomas
    Jans, Lennart
    Herregods, Nele
    Carron, Philippe
    van den Bosch, Filip
    Saeys, Yvan
    Elewaut, Dirk
    [J]. ARTHRITIS & RHEUMATOLOGY, 2023, 75 (12) : 2169 - 2177
  • [28] The development of Assessment of SpondyloArthritis international Society classification criteria for axial spondyloarthritis (part II): validation and final selection
    Rudwaleit, M.
    van der Heijde, D.
    Landewe, R.
    Listing, J.
    Akkoc, N.
    Brandt, J.
    Braun, J.
    Chou, C. T.
    Collantes-Estevez, E.
    Dougados, M.
    Huang, F.
    Gu, J.
    Khan, M. A.
    Kirazli, Y.
    Maksymowych, W. P.
    Mielants, H.
    Sorensen, I. J.
    Ozgocmen, S.
    Roussou, E.
    Valle-Onate, R.
    Weber, U.
    Wei, J.
    Sieper, J.
    [J]. ANNALS OF THE RHEUMATIC DISEASES, 2009, 68 (06) : 777 - 783
  • [29] Delayed diagnosis is linked to worse outcomes and unfavourable treatment responses in patients with axial spondyloarthritis
    Seo, Mi Ryoung
    Baek, Hae Lim
    Yoon, Hyun Hwa
    Ryu, Hee Jung
    Choi, Hyo-Jin
    Baek, Han Joo
    Ko, Kwang-Pil
    [J]. CLINICAL RHEUMATOLOGY, 2015, 34 (08) : 1397 - 1405
  • [30] Automatic detection and diagnosis of sacroiliitis in CT scans as incidental findings
    Shenkman, Yigal
    Qutteineh, Bilal
    Joskowicz, Leo
    Szeskin, Adi
    Yusef, Azraq
    Mayer, Arnaldo
    Eshed, Iris
    [J]. MEDICAL IMAGE ANALYSIS, 2019, 57 : 165 - 175