New EAQEC codes from LCP of codes over finite non-chain ringsNew EAQEC codes from LCP of codes over finite non-chain ringsP. Hu. X. Liu

被引:0
作者
Peng Hu [1 ]
Xiusheng Liu [2 ]
机构
[1] Hubei Polytechnic University,School of Mathematics and Physics
[2] Hubei Normal University,School of Science and Technology, College of Arts and Science
关键词
EAQEC codes; LCP of codes; Constacyclic codes; 94B15; 94B65; 11T71;
D O I
10.1007/s11128-025-04687-9
中图分类号
学科分类号
摘要
In this paper, we first study the linear complementary pair (abbreviated to LCP) of codes over finite non-chain rings Ru,v,q=Fq+uFq+vFq+uvFq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{u,v,q}={\mathbb {F}}_q+u{\mathbb {F}}_q+ v{\mathbb {F}}_q+uv{\mathbb {F}}_q$$\end{document} with u2=u,v2=v\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u^2=u,v^2=v$$\end{document}. Then we provide a method of constructing entanglement-assisted quantum error-correcting (abbreviated to EAQEC) codes from an LCP of codes of length n over Ru,v,q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{u,v,q}$$\end{document} using CSS. To enrich the variety of available EAQEC codes, some new EAQEC codes are given in the sense that their parameters are different from all the previous constructions.
引用
收藏
相关论文
共 29 条
[21]   Self dual, reversible and complementary duals constacyclic codes over finite local Frobenius non-chain rings of length 5 and nilpotency index 4 [J].
Castillo-Guillen, C. A. ;
Alvarez-Garcia, C. .
ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2021, 29 (02) :25-50
[22]   New quantum codes from dual-containing cyclic codes over finite rings [J].
Tang, Yongsheng ;
Zhu, Shixin ;
Kai, Xiaoshan ;
Ding, Jian .
QUANTUM INFORMATION PROCESSING, 2016, 15 (11) :4489-4500
[23]   Polyadic constacyclic codes over a non-chain ring Fq[u, v]/⟨f (u), g(v), uv - vu⟩ [J].
Goyal, Mokshi ;
Raka, Madhu .
JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2020, 62 (1-2) :425-447
[24]   Non-Binary Quantum Codes from Cyclic Codes over Fp x (Fp + vFp) [J].
Caliskan, Fatma ;
Yildirim, Tulay ;
Aksoy, Refia .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2023, 62 (02)
[25]   New QEC and EAQEC codes from repeated-root cyclic codesof length 10psover finite fields Fpm [J].
Liu, Xiusheng ;
Hu, Peng .
QUANTUM INFORMATION PROCESSING, 2024, 23 (05)
[26]   Repeated-root constacyclic codes of length 3ps over the finite non-chain ring Fpm[u,v]/ ⟨u2, v2, uv-vu⟩ and their duals [J].
Acharya, Divya ;
Poojary, Prasanna ;
Bhatta, G. R. Vadiraja .
DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2025, 17 (05)
[27]   Negacyclic codes of prime power length over the finite non-commutative chain ring Fpm[u,θ]/⟨u2⟩ [J].
Inchaisri, Teeramet ;
Phuto, Jirayu ;
Klin-Eam, Chakkrid .
DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2022, 14 (01)
[28]   NEW NON-BINARY QUANTUM CODES FROM CONSTACYCLIC CODES OVER Fq[u,v]/⟨u2-1, v2 - v, uu - vu) [J].
Ma, Fanghui ;
Gao, Jian ;
Fu, Fang-Wei .
ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2019, 13 (03) :421-434
[29]   Polyadic constacyclic codes over a non-chain ring Fq[u,v]/⟨f(u),g(v),uv-vu⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_{q}[u,v]/\langle f(u),g(v), uv-vu\rangle $$\end{document} [J].
Mokshi Goyal ;
Madhu Raka .
Journal of Applied Mathematics and Computing, 2020, 62 :425-447