共 29 条
[1]
Batista G.E.A.P.A., Prati R.C., Monard M.C., A study of the behavior of several methods for balancing machine learning training data, ACM SIGKDD Explor Newslett, 6, 1, pp. 20-29, (2004)
[2]
Barua S., Islam M.M., Yao X., Murase K., MWMOTE—majority weighted minority oversampling technique for imbalanced data set learning, IEEE Trans Knowl Data Eng, 26, 2, pp. 405-425, (2014)
[3]
Bunkhumpornpat C., Sinapiromsaran K., Lursinsap C., Safe-level-SMOTE: safe-level-synthetic minority over-sampling technique for handling the class imbalanced problem, Pacific-Asia conference on knowledge discovery and data mining, pp. 475-482, (2009)
[4]
Douzas G., Bacao F., Self-organizing map oversampling (SOMO) for imbalanced data set learning, Expert Syst Appl, 82, pp. 40-52, (2017)
[5]
Douzas G., Rauch R., Bacao F., G-SOMO: An oversampling approach based on self-organized maps and geometric SMOTE, Expert Syst Appl, 183, (2021)
[6]
Fan S.K.S., Tsai D.-M., He F., Huang J.-Y., Jen C.-H., Key parameter identification and defective wafer detection of semiconductor manufacturing processes using image processing techniques, IEEE Trans Semiconduct Manuf, 32, pp. 544-552, (2019)
[7]
Fernandez A., Garcia S., Galar M., Prati R.C., Krawczyk B., Herrera F., Learning from imbalanced data sets, (2018)
[8]
Fernandez A., Garcia S., Herrera F., Chawla N.V., SMOTE for learning from imbalanced data: progress and challenges, marking the 15-year anniversary, J Artif Intell Res, 61, pp. 863-905, (2018)
[9]
Guo J., Wu H., Chen X., Lin W., Adaptive SV-Borderline SMOTE-SVM algorithm for imbalanced data classification, Appl Soft Comput, 150, (2024)
[10]
He H., Bai Y., Garcia E.A., Li S., ADASYN: adaptive synthetic sampling approach for imbalanced learning, IEEE international joint conference on neural networks (IJCNN 2008), pp. 1322-1328, (2008)