Classification of Gradient Ricci Solitons with Harmonic Weyl Curvature

被引:1
作者
Kim, Jongsu [1 ]
机构
[1] Sogang Univ, Dept Math, Seoul 04107, South Korea
基金
新加坡国家研究基金会;
关键词
Gradient Ricci soliton; Harmonic Weyl curvature; Steady Ricci soliton; Expanding Ricci soliton; MANIFOLDS; RIGIDITY;
D O I
10.1007/s12220-025-01983-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We make classifications of gradient Ricci solitons (M, g, f) with harmonic Weyl curvature. As a local classification, we show that the associated Riemannian metric g is locally among the types (i)-(iv) in Theorem 1. Compared with the previous four-dimensional study in [25], we have developed a novel method of refined adapted frame fields and overcome the main difficulty arising from a large number of Riemmannian connection components in dimension >= 5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \ge 5$$\end{document}. Next we have obtained a classification of complete ones with harmonic Weyl curvature. For the proof, using the real analytic nature of g and f, we elaborate geometric arguments to fit together local regions.
引用
收藏
页数:33
相关论文
共 39 条
[1]   Two-Dimensional Gradient Ricci Solitons Revisited [J].
Bernstein, Jacob ;
Mettler, Thomas .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (01) :78-98
[2]  
Besse A.L., 2008, Einstein Manifolds, DOI DOI 10.1007/978-3-540-74311-8
[3]   Rotational symmetry of self-similar solutions to the Ricci flow [J].
Brendle, Simon .
INVENTIONES MATHEMATICAE, 2013, 194 (03) :731-764
[4]  
Cao H.-D., 2008, SURVEYS DIFFERENTIAL, VXII, P47, DOI [10.4310/SDG.2007.v12.n1.a3, DOI 10.4310/SDG.2007.V12.N1.A3]
[5]   ON COMPLETE GRADIENT STEADY RICCI SOLITONS WITH VANISHING D-TENSOR [J].
Cao, Huai-Dong ;
Yu, Jiangtao .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 149 (04) :1733-1742
[6]   Bach-flat gradient steady Ricci solitons [J].
Cao, Huai-Dong ;
Catino, Giovanni ;
Chen, Qiang ;
Mantegazza, Carlo ;
Mazzieri, Lorenzo .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2014, 49 (1-2) :125-138
[7]   ON BACH-FLAT GRADIENT SHRINKING RICCI SOLITONS [J].
Cao, Huai-Dong ;
Chen, Qiang .
DUKE MATHEMATICAL JOURNAL, 2013, 162 (06) :1149-1169
[8]   ON LOCALLY CONFORMALLY FLAT GRADIENT STEADY RICCI SOLITONS [J].
Cao, Huai-Dong ;
Chen, Qiang .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 364 (05) :2377-2391
[9]   ON LOCALLY CONFORMALLY FLAT GRADIENT SHRINKING RICCI SOLITONS [J].
Cao, Xiaodong ;
Wang, Biao ;
Zhang, Zhou .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2011, 13 (02) :269-282
[10]   THE EVOLUTION OF THE WEYL TENSOR UNDER THE RICCI FLOW [J].
Catino, Giovanni ;
Mantegazza, Carlo .
ANNALES DE L INSTITUT FOURIER, 2011, 61 (04) :1407-1435