On approximations of subordinators in Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document} and the simulation of tempered stable distributions

被引:0
|
作者
Michael Grabchak [1 ]
Sina Saba [1 ]
机构
[1] University of North Carolina Charlotte,
关键词
Subordinators; Tempered stable distributions; Simulation; Poisson mixtures; Rates of convergence; Probability metrics;
D O I
10.1007/s11222-025-10586-x
中图分类号
学科分类号
摘要
Subordinators are infinitely divisible distributions on the positive half-line. They are often used as mixing distributions in Poisson mixtures. We show that appropriately scaled Poisson mixtures can approximate the mixing subordinator and we derive a rate of convergence in Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document} for each p∈[1,∞]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\in [1,\infty ]$$\end{document}. This includes the Kolmogorov and Wasserstein metrics as special cases. As an application, we develop an approach for approximate simulation of the underlying subordinator. In the interest of generality, we present our results in the context of more general mixtures, specifically those that can be represented as differences of randomly stopped Lévy processes. Particular focus is given to the case where the subordinator belongs to the class of tempered stable distributions.
引用
收藏
相关论文
共 21 条