A proficient approach for the classification of Alzheimer's disease using a hybridization of machine learning and deep learning

被引:2
作者
Raza, Hafiz Ahmed [1 ]
Ansari, Shahab U. [1 ]
Javed, Kamran [2 ]
Hanif, Muhammad [1 ]
Qaisar, Saeed Mian [3 ]
Haider, Usman [4 ]
Plawiak, Pawel [5 ,6 ]
Maab, Iffat [7 ,8 ]
机构
[1] GIK Inst Engn Sci & Technol, Artificial Intelligence Med AIM Lab, Swabi 23640, Pakistan
[2] Saudi Data & Artificial Intelligence Author SDAIA, Natl Ctr Artificial Intelligence NCAI, Riyadh, Saudi Arabia
[3] Amer Univ Middle East, Coll Engn & Technol, Egaila 54200, Kuwait
[4] Natl Univ Comp & Emerging Sci, Dept AI & DS, FAST NUCES, Islamabad 23640, Pakistan
[5] Cracow Univ Technol, Fac Comp Sci & Telecommun, Dept Comp Sci, Warszawska 24, PL-31155 Krakow, Poland
[6] Polish Acad Sci, Inst Theoret & Appl Informat, Baltycka 5, PL-44100 Gliwice, Poland
[7] Univ Tokyo, Dept Technol Management Innovat, Tokyo 1138654, Japan
[8] Natl Inst Informat, Chiyoda City, Tokyo 1010003, Japan
关键词
Alzheimer's disease; Classification; Machine learning; Convolutional neural network; Hybrid features learning; MRI; DEMENTIA; STATE;
D O I
10.1038/s41598-024-81563-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Alzheimer's disease (AD) is a neurodegenerative disorder. It causes progressive degeneration of the nervous system, affecting the cognitive ability of the human brain. Over the past two decades, neuroimaging data from Magnetic Resonance Imaging (MRI) scans has been increasingly used in the study of brain pathology related to the birth and growth of AD. Recent studies have employed machine learning to detect and classify AD. Deep learning models have also been increasingly utilized with varying degrees of success. This paper presents a novel hybrid approach for early detection and classification of AD using structural MRI (sMRI). The proposed model employs a unique combination of machine learning and deep learning approaches to optimize the precision and accuracy of the detection and classification of AD. The proposed approach surpassed multi-modal machine learning algorithms in accuracy, precision, and F-measure performance measures. Results confirm an outperformance compared to the state-of-the-art in AD versus CN and sMCI versus pMCI paradigms. Within the CN versus AD paradigm, the designed model achieves 91.84% accuracy on test data.
引用
收藏
页数:14
相关论文
共 36 条
[1]  
Al-Khuzaie F.E., 2021, Diagnosis of alzheimer disease using 2d mri slices by convolutional neural network, V1
[2]  
Altaf T., 2017, IEEE FUT TECHN C
[3]   2018 Alzheimer's disease facts and figures [J].
不详 .
ALZHEIMERS & DEMENTIA, 2018, 14 (03) :367-425
[4]   A Comparative Analysis of Machine Learning Algorithms to Predict Alzheimer's Disease [J].
Bari Antor, Morshedul ;
Jamil, A. H. M. Shafayet ;
Mamtaz, Maliha ;
Monirujjaman Khan, Mohammad ;
Aljahdali, Sultan ;
Kaur, Manjit ;
Singh, Parminder ;
Masud, Mehedi .
JOURNAL OF HEALTHCARE ENGINEERING, 2021, 2021
[5]   Relative frequencies of Alzheimer disease, Lewy body, vascular and frontotemporal dementia, and hippocampal sclerosis in the state of Florida Brain Bank [J].
Barker, WW ;
Luis, CA ;
Kashuba, A ;
Luis, M ;
Harwood, DG ;
Loewenstein, D ;
Waters, C ;
Jimison, P ;
Shepherd, E ;
Sevush, S ;
Graff-Radford, N ;
Newland, D ;
Todd, M ;
Miller, B ;
Gold, M ;
Heilman, K ;
Doty, L ;
Goodman, I ;
Robinson, B ;
Pearl, G ;
Dickson, D ;
Duara, R .
ALZHEIMER DISEASE & ASSOCIATED DISORDERS, 2002, 16 (04) :203-212
[6]   Investigating the Optimal DOD and Battery Technology for Hybrid Energy Generation Models in Cement Industry Using HOMER Pro [J].
Basheer, Yasir ;
Qaisar, Saeed Mian ;
Waqar, Asad ;
Lateef, Fahad ;
Alzahrani, Ahmad .
IEEE ACCESS, 2023, 11 :81331-81347
[7]   Comprehensive Review on Alzheimer's Disease: Causes and Treatment [J].
Breijyeh, Zeinab ;
Karaman, Rafik .
MOLECULES, 2020, 25 (24)
[8]   Forecasting the global burden of Alzheimer's disease [J].
Brookmeyer, Ron ;
Johnson, Elizabeth ;
Ziegler-Graham, Kathryn ;
Arrighi, H. Michael .
ALZHEIMERS & DEMENTIA, 2007, 3 (03) :186-191
[9]   A comparative study of logistic model tree, random forest, and classification and regression tree models for spatial prediction of landslide susceptibility [J].
Chen, Wei ;
Xie, Xiaoshen ;
Wang, Jiale ;
Pradhan, Biswajeet ;
Hong, Haoyuan ;
Bui, Dieu Tien ;
Duan, Zhao ;
Ma, Jianquan .
CATENA, 2017, 151 :147-160
[10]   Deep learning to detect Alzheimer's disease from neuroimaging: A systematic literature review [J].
Ebrahimighahnavieh, Mr Amir ;
Luo, Suhuai ;
Chiong, Raymond .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2020, 187