共 95 条
[51]
Rainio O., Teuho J., Klen R., Evaluation metrics and statistical tests for machine learning, Sci Rep, 14, 1, (2024)
[52]
Virtanen P., Gommers R., Oliphant T.E., Haberland M., Reddy T., Cournapeau D., Et al., SciPy 1.0: fundamental algorithms for scientific computing in Python, Nat Methods, 17, 3, pp. 261-272, (2020)
[53]
Pizarro J., Guerrero E., Galindo P.L., Multiple comparison procedures applied to model selection, Neurocomputing, 48, 1-4, pp. 155-173, (2002)
[54]
Janez D., Statistical comparisons of classifiers over multiple data sets, J Mach Learn Res, 7, pp. 1-30, (2006)
[55]
Scikit-Posthocs - Pypi. Python Software Foundation, (2024)
[56]
Covert I., Lundberg S.M., Lee S.I., Understanding Global Feature Contributions With Additive Importance Measures, Adv Neural Inf Process Syst, 33, pp. 17212-17223, (2020)
[57]
Lundberg S., Erion G., Chen H., DeGrave A., Prutkin J., Nair B., Et al., From local explanations to global understanding with explainable AI for trees, Nat Mach Intell, 2, 1, pp. 2522-5839, (2020)
[58]
Shahmuradov I.A., Umarov R., Solovyev V., TSSPlant: A new tool for prediction of plant Pol II promoters, Nucleic Acids Res, 45, 8, (2017)
[59]
Ramirez F., Ryan D.P., Gruning B., Bhardwaj V., Kilpert F., Richter A.S., Et al., deepTools2: a next generation web server for deep-sequencing data analysis, Nucleic Acids Res, 44, W1, pp. W160-W165, (2016)
[60]
Bailey T.L., Johnson J., Grant C.E., Noble W.S., The MEME Suite, Nucleic Acids Res, 43, W1, pp. W39-W49, (2015)