Multiphoton 3D lithography

被引:0
|
作者
Skliutas, Edvinas [1 ]
Merkininkaite, Greta [2 ]
Maruo, Shoji [3 ]
Zhang, Wenxin [4 ]
Chen, Wenyuan [4 ]
Deng, Weiting [4 ]
Greer, Julia [4 ,5 ]
Freymann, Georg von [6 ,7 ,8 ]
Malinauskas, Mangirdas [1 ]
机构
[1] Vilnius Univ, Phys Fac, Laser Res Ctr, Laser Nanophoton Grp, Vilnius, Lithuania
[2] Vilnius Univ, Fac Chem & Geosci, Lab Mat Sci, Vilnius, Lithuania
[3] Yokohama Natl Univ, Fac Engn, Yokohama, Japan
[4] CALTECH, Div Engn & Appl Sci, Pasadena, CA USA
[5] Caltech, Kavli Nanosci Inst, Pasadena, CA USA
[6] Rheinland Pfalz Tech Univ Kaiserslautern Landau, Dept Phys, Kaiserslautern, Germany
[7] Rheinland Pfalz Tech Univ Kaiserslautern Landau, Res Ctr OPTIMAS, Kaiserslautern, Germany
[8] Fraunhofer Inst Ind Math ITWM, Kaiserslautern, Germany
来源
NATURE REVIEWS METHODS PRIMERS | 2025年 / 5卷 / 01期
关键词
2-PHOTON POLYMERIZATION; MECHANICAL RESILIENCE; PHOTONIC CRYSTALS; REFRACTIVE-INDEX; IN-SITU; FABRICATION; MICROFABRICATION; MICROSTRUCTURES; POLYMERS; DIFFRACTION;
D O I
10.1038/s43586-025-00386-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Multiphoton 3D lithography (MP3DL) is a mesoscale additive manufacturing technique (product dimensions range from nanometres to centimetres) that uses confined non-linear light-matter interactions to produce 3D structures. The use of ultrafast pulsed lasers to induce photocrosslinking enables rapid optical 3D printing of diverse materials ranging from pure organic natural resins to fully inorganic amorphous and crystalline ceramics. MP3DL allows for the direct writing of unrestricted, true free-form geometries, reaching 100 nm feature size and millimetre-scale object dimensions; further, the dose dependence of the photomodification depth (degree of conversion) allows for 3D greyscale and 4D patterning. The throughput of the technique is constantly improving with the recent development of novel light sources, synthesis of special materials and novel exposure strategies. In this Primer, we introduce the photophysical principles behind the technique, describe experimental methods, highlight the milestones achieved, review promising applications and discuss reproducibility, limitations and upcoming optimizations. Finally, we provide an outlook on future trends and the potential to exploit artificial intelligence for mesoscale multi-material 4D advanced additive manufacturing.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] 3D LASER LITHOGRAPHY COMBINED WITH PARYLENE COATING FOR THE RAPID FABRICATION OF 3D MICROSTRUCTURES
    Kurihara, M.
    Heo, Y. J.
    Kuribayashi-Shigetomi, K.
    Takeuchi, S.
    2012 IEEE 25TH INTERNATIONAL CONFERENCE ON MICRO ELECTRO MECHANICAL SYSTEMS (MEMS), 2012,
  • [32] 3D Nanofabrication of Fluidic Components by Corner Lithography
    Berenschot, Erwin J. W.
    Burouni, Narges
    Schurink, Bart
    van Honschoten, Joost W.
    Sanders, Remco G. P.
    Truckenmuller, Roman
    Jansen, Henri V.
    Elwenspoek, Miko C.
    van Apeldoorn, Aart A.
    Tas, Niels R.
    SMALL, 2012, 8 (24) : 3823 - 3831
  • [33] Fabrication of 3D microstructures using grayscale lithography
    Lima, Frederico
    Khazi, Isman
    Mescheder, Ulrich
    Tungal, Alok C.
    Muthiah, Uma
    ADVANCED OPTICAL TECHNOLOGIES, 2019, 8 (3-4) : 181 - 193
  • [34] Breakthroughs in imprint lithography and 3D additive fabrication
    Desimone, Joseph
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 250
  • [35] 3D Simulation of Nano-Imprint Lithography
    Marin, Jose Manuel Roman
    Rasmussen, Henrik Koblitz
    Hassager, Ole
    NANOSCALE RESEARCH LETTERS, 2010, 5 (02): : 274 - 278
  • [36] Lock release lithography for 3D and composite microparticles
    Bong, Ki Wan
    Pregibon, Daniel C.
    Doyle, Patrick S.
    LAB ON A CHIP, 2009, 9 (07) : 863 - 866
  • [37] Micro Stereo Lithography for 3D MEMS devices
    Varadan, VK
    Varadan, VV
    SMART STRUCTURES AND MATERIALS 2001: SMART ELECTRONICS AND MEMS, 2001, 4334 : 280 - 290
  • [38] 3D PHOTONIC CRYSTALS FABRICATED BY NANOIMPRINT LITHOGRAPHY
    Eibelhuber, M.
    Matthias, T.
    Glinsner, T.
    2014 INTERNATIONAL CONFERENCE ON OPTICAL MEMS AND NANOPHOTONICS (OMN), 2014, : 205 - 206
  • [39] 3D nanostructures fabricated by advanced stencil lithography
    Yesilkoy, F.
    Flauraud, V.
    Rueegg, M.
    Kim, B. J.
    Brugger, J.
    NANOSCALE, 2016, 8 (09) : 4945 - 4950
  • [40] Lithography-based 3D printing of hydrogels
    Dhand, Abhishek P.
    Davidson, Matthew D.
    Burdick, Jason A.
    NATURE REVIEWS BIOENGINEERING, 2025, 3 (02): : 108 - 125