Multiphoton 3D lithography

被引:0
|
作者
Skliutas, Edvinas [1 ]
Merkininkaite, Greta [2 ]
Maruo, Shoji [3 ]
Zhang, Wenxin [4 ]
Chen, Wenyuan [4 ]
Deng, Weiting [4 ]
Greer, Julia [4 ,5 ]
Freymann, Georg von [6 ,7 ,8 ]
Malinauskas, Mangirdas [1 ]
机构
[1] Vilnius Univ, Phys Fac, Laser Res Ctr, Laser Nanophoton Grp, Vilnius, Lithuania
[2] Vilnius Univ, Fac Chem & Geosci, Lab Mat Sci, Vilnius, Lithuania
[3] Yokohama Natl Univ, Fac Engn, Yokohama, Japan
[4] CALTECH, Div Engn & Appl Sci, Pasadena, CA USA
[5] Caltech, Kavli Nanosci Inst, Pasadena, CA USA
[6] Rheinland Pfalz Tech Univ Kaiserslautern Landau, Dept Phys, Kaiserslautern, Germany
[7] Rheinland Pfalz Tech Univ Kaiserslautern Landau, Res Ctr OPTIMAS, Kaiserslautern, Germany
[8] Fraunhofer Inst Ind Math ITWM, Kaiserslautern, Germany
来源
NATURE REVIEWS METHODS PRIMERS | 2025年 / 5卷 / 01期
关键词
2-PHOTON POLYMERIZATION; MECHANICAL RESILIENCE; PHOTONIC CRYSTALS; REFRACTIVE-INDEX; IN-SITU; FABRICATION; MICROFABRICATION; MICROSTRUCTURES; POLYMERS; DIFFRACTION;
D O I
10.1038/s43586-025-00386-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Multiphoton 3D lithography (MP3DL) is a mesoscale additive manufacturing technique (product dimensions range from nanometres to centimetres) that uses confined non-linear light-matter interactions to produce 3D structures. The use of ultrafast pulsed lasers to induce photocrosslinking enables rapid optical 3D printing of diverse materials ranging from pure organic natural resins to fully inorganic amorphous and crystalline ceramics. MP3DL allows for the direct writing of unrestricted, true free-form geometries, reaching 100 nm feature size and millimetre-scale object dimensions; further, the dose dependence of the photomodification depth (degree of conversion) allows for 3D greyscale and 4D patterning. The throughput of the technique is constantly improving with the recent development of novel light sources, synthesis of special materials and novel exposure strategies. In this Primer, we introduce the photophysical principles behind the technique, describe experimental methods, highlight the milestones achieved, review promising applications and discuss reproducibility, limitations and upcoming optimizations. Finally, we provide an outlook on future trends and the potential to exploit artificial intelligence for mesoscale multi-material 4D advanced additive manufacturing.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] 3D-ordered porous composite microparticles formed via substrate-free optical 3D lithography
    Ahn, Jinseong
    Ahn, Junyong
    Park, Junyong
    FUNCTIONAL COMPOSITES AND STRUCTURES, 2020, 2 (04):
  • [22] FEMTOSECOND TWO-PHOTON 3D LIGHTFIELD LITHOGRAPHY
    Jakkinapalli, Aravind
    Baskar, Balaji
    Wen, Sy-Bor
    PROCEEDINGS OF THE ASME 2021 HEAT TRANSFER SUMMER CONFERENCE (HT2021), 2021,
  • [23] Development of 3D Electron Beam Lithography Fabrication Simulator
    Yeh, Hsiu-Ming
    Chen, Kuo-Shen
    Lin, I-Kuan
    JOURNAL OF APPLIED SCIENCE AND ENGINEERING, 2007, 10 (02): : 167 - 172
  • [24] Protein Crosslinking and Immobilization in 3D Microfluidics through Multiphoton Absorption
    Lin, Chen-Feng
    Su, Che-Fu
    Lin, Kung-Hsuan
    Hsieh, Yu-Shen
    Cheng, Yun-Chien
    ECS JOURNAL OF SOLID STATE SCIENCE AND TECHNOLOGY, 2020, 9 (11)
  • [25] Moving-mask Lithography for 3D Microstructure Molding
    Kato, Nobuhiro
    Kai, Takahisa
    Hirano, Masakazu
    JOURNAL OF PHOTOPOLYMER SCIENCE AND TECHNOLOGY, 2014, 27 (01) : 85 - 89
  • [26] Mesenchymal Stem Cell Interactions with 3D ECM Modules Fabricated via Multiphoton Excited Photochemistry
    Su, Ping-Jung
    Tran, Quyen A.
    Fong, Jimmy J.
    Eliceiri, Kevin W.
    Ogle, Brenda M.
    Campagnola, Paul J.
    BIOMACROMOLECULES, 2012, 13 (09) : 2917 - 2925
  • [27] Electroplated Functional Materials with 3D Nanostructures Defined by Advanced Optical Lithography and Their Emerging Applications
    Ahn, Jinseong
    Hong, Seokkyoon
    Shim, Young-Seok
    Park, Junyong
    APPLIED SCIENCES-BASEL, 2020, 10 (24): : 1 - 20
  • [28] Tuning the refractive index in 3D direct laser writing lithography: towards GRIN microoptics
    Zukauskas, Albertas
    Matulaitiene, Ieva
    Paipulas, Domas
    Niaura, Gediminas
    Malinauskas, Mangirdas
    Gadonas, Roaldas
    LASER & PHOTONICS REVIEWS, 2015, 9 (06) : 706 - 712
  • [29] Frontiers of Laser-Based 3D Printing: A Perspective on Multi-Photon Lithography
    Zyla, Gordon
    Farsari, Maria
    LASER & PHOTONICS REVIEWS, 2024, 18 (07)
  • [30] Rapid prototyping of 3D microstructures: A simplified grayscale lithography encoding method using blender
    Borghi, Fabricio Frizera
    Bendimerad, Mohammed
    Chapon, Marie-Ly
    Petithory, Tatiana
    Vonna, Laurent
    Pieuchot, Laurent
    MICRO AND NANO ENGINEERING, 2025, 26