Multiphoton 3D lithography

被引:0
|
作者
Skliutas, Edvinas [1 ]
Merkininkaite, Greta [2 ]
Maruo, Shoji [3 ]
Zhang, Wenxin [4 ]
Chen, Wenyuan [4 ]
Deng, Weiting [4 ]
Greer, Julia [4 ,5 ]
Freymann, Georg von [6 ,7 ,8 ]
Malinauskas, Mangirdas [1 ]
机构
[1] Vilnius Univ, Phys Fac, Laser Res Ctr, Laser Nanophoton Grp, Vilnius, Lithuania
[2] Vilnius Univ, Fac Chem & Geosci, Lab Mat Sci, Vilnius, Lithuania
[3] Yokohama Natl Univ, Fac Engn, Yokohama, Japan
[4] CALTECH, Div Engn & Appl Sci, Pasadena, CA USA
[5] Caltech, Kavli Nanosci Inst, Pasadena, CA USA
[6] Rheinland Pfalz Tech Univ Kaiserslautern Landau, Dept Phys, Kaiserslautern, Germany
[7] Rheinland Pfalz Tech Univ Kaiserslautern Landau, Res Ctr OPTIMAS, Kaiserslautern, Germany
[8] Fraunhofer Inst Ind Math ITWM, Kaiserslautern, Germany
来源
NATURE REVIEWS METHODS PRIMERS | 2025年 / 5卷 / 01期
关键词
2-PHOTON POLYMERIZATION; MECHANICAL RESILIENCE; PHOTONIC CRYSTALS; REFRACTIVE-INDEX; IN-SITU; FABRICATION; MICROFABRICATION; MICROSTRUCTURES; POLYMERS; DIFFRACTION;
D O I
10.1038/s43586-025-00386-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Multiphoton 3D lithography (MP3DL) is a mesoscale additive manufacturing technique (product dimensions range from nanometres to centimetres) that uses confined non-linear light-matter interactions to produce 3D structures. The use of ultrafast pulsed lasers to induce photocrosslinking enables rapid optical 3D printing of diverse materials ranging from pure organic natural resins to fully inorganic amorphous and crystalline ceramics. MP3DL allows for the direct writing of unrestricted, true free-form geometries, reaching 100 nm feature size and millimetre-scale object dimensions; further, the dose dependence of the photomodification depth (degree of conversion) allows for 3D greyscale and 4D patterning. The throughput of the technique is constantly improving with the recent development of novel light sources, synthesis of special materials and novel exposure strategies. In this Primer, we introduce the photophysical principles behind the technique, describe experimental methods, highlight the milestones achieved, review promising applications and discuss reproducibility, limitations and upcoming optimizations. Finally, we provide an outlook on future trends and the potential to exploit artificial intelligence for mesoscale multi-material 4D advanced additive manufacturing.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Multiphoton 3D lithography
    不详
    NATURE REVIEWS METHODS PRIMERS, 2025, 5 (01):
  • [2] 3D multiphoton lithography using biocompatible polymers with specific mechanical properties
    Buchroithner, Boris
    Hartmann, Delara
    Mayr, Sandra
    Oh, Yoo Jin
    Sivun, Dmitry
    Karner, Andreas
    Buchegger, Bianca
    Griesser, Thomas
    Hinterdorfer, Peter
    Klar, Thomas A.
    Jacak, Jaroslaw
    NANOSCALE ADVANCES, 2020, 2 (06): : 2422 - 2428
  • [3] Polymers for Regenerative Medicine Structures Made via Multiphoton 3D Lithography
    Merkininkaite, Greta
    Gailevicius, Darius
    Sakirzanovas, Simas
    Jonusauskas, Linas
    INTERNATIONAL JOURNAL OF POLYMER SCIENCE, 2019, 2019
  • [4] Biomechanical metamaterials fabricated through multiphoton lithography by tailoring 3D buckling
    Vangelatos, Zacharias
    Grigoropoulos, Costas P.
    Farsari, Maria
    Gu, Grace
    Ma, Zhen
    Komvopoulos, Kyriakos
    LASER-BASED MICRO- AND NANOPROCESSING XIV, 2020, 11268
  • [5] Multiphoton Lithography of Nanocrystalline Platinum and Palladium for Site-Specific Catalysis in 3D Microenvironments
    Zarzar, Lauren D.
    Swartzentruber, B. S.
    Harper, Jason C.
    Dunphy, Darren R.
    Brinker, C. Jeffrey
    Aizenberg, Joanna
    Kaehr, Bryan
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (09) : 4007 - 4010
  • [6] Materials for Multiphoton 3D Microfabrication
    Seth R. Marder
    Jean-Luc Brédas
    Joseph W. Perry
    MRS Bulletin, 2007, 32 : 561 - 565
  • [7] Materials for multiphoton 3D microfabrication
    Marder, Seth R.
    Bredas, Jean-Luc
    Perry, Joseph W.
    MRS BULLETIN, 2007, 32 (07) : 561 - 565
  • [8] Multiphoton Lithography of Organic Semiconductor Devices for 3D Printing of Flexible Electronic Circuits, Biosensors, and Bioelectronics
    Dadras-Toussi, Omid
    Khorrami, Milad
    Louis Sam Titus, Anto Sam Crosslee
    Majd, Sheereen
    Mohan, Chandra
    Abidian, Mohammad Reza
    ADVANCED MATERIALS, 2022, 34 (30)
  • [9] 3D Printing of Regenerated Silk Fibroin and Antibody-Containing Microstructures via Multiphoton Lithography
    Dickerson, Matthew B.
    Dennis, Patrick B.
    Tondiglia, Vincent P.
    Nadeau, Lloyd J.
    Singh, Kristi M.
    Drummy, Lawrence F.
    Partlow, Benjamin P.
    Brown, Dean P.
    Omenetto, Fiorenzo G.
    Kaplan, David L.
    Naik, Rajesh R.
    ACS BIOMATERIALS SCIENCE & ENGINEERING, 2017, 3 (09): : 2064 - 2075
  • [10] 3D Optical Laser Lithography
    Wegener, Martin
    NANO-OPTICS: PRINCIPLES ENABLING BASIC RESEARCH AND APPLICATIONS, 2017, : 143 - 148