Multiphoton 3D lithography

被引:0
|
作者
Skliutas, Edvinas [1 ]
Merkininkaite, Greta [2 ]
Maruo, Shoji [3 ]
Zhang, Wenxin [4 ]
Chen, Wenyuan [4 ]
Deng, Weiting [4 ]
Greer, Julia [4 ,5 ]
Freymann, Georg von [6 ,7 ,8 ]
Malinauskas, Mangirdas [1 ]
机构
[1] Vilnius Univ, Phys Fac, Laser Res Ctr, Laser Nanophoton Grp, Vilnius, Lithuania
[2] Vilnius Univ, Fac Chem & Geosci, Lab Mat Sci, Vilnius, Lithuania
[3] Yokohama Natl Univ, Fac Engn, Yokohama, Japan
[4] CALTECH, Div Engn & Appl Sci, Pasadena, CA USA
[5] Caltech, Kavli Nanosci Inst, Pasadena, CA USA
[6] Rheinland Pfalz Tech Univ Kaiserslautern Landau, Dept Phys, Kaiserslautern, Germany
[7] Rheinland Pfalz Tech Univ Kaiserslautern Landau, Res Ctr OPTIMAS, Kaiserslautern, Germany
[8] Fraunhofer Inst Ind Math ITWM, Kaiserslautern, Germany
来源
NATURE REVIEWS METHODS PRIMERS | 2025年 / 5卷 / 01期
关键词
2-PHOTON POLYMERIZATION; MECHANICAL RESILIENCE; PHOTONIC CRYSTALS; REFRACTIVE-INDEX; IN-SITU; FABRICATION; MICROFABRICATION; MICROSTRUCTURES; POLYMERS; DIFFRACTION;
D O I
10.1038/s43586-025-00386-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Multiphoton 3D lithography (MP3DL) is a mesoscale additive manufacturing technique (product dimensions range from nanometres to centimetres) that uses confined non-linear light-matter interactions to produce 3D structures. The use of ultrafast pulsed lasers to induce photocrosslinking enables rapid optical 3D printing of diverse materials ranging from pure organic natural resins to fully inorganic amorphous and crystalline ceramics. MP3DL allows for the direct writing of unrestricted, true free-form geometries, reaching 100 nm feature size and millimetre-scale object dimensions; further, the dose dependence of the photomodification depth (degree of conversion) allows for 3D greyscale and 4D patterning. The throughput of the technique is constantly improving with the recent development of novel light sources, synthesis of special materials and novel exposure strategies. In this Primer, we introduce the photophysical principles behind the technique, describe experimental methods, highlight the milestones achieved, review promising applications and discuss reproducibility, limitations and upcoming optimizations. Finally, we provide an outlook on future trends and the potential to exploit artificial intelligence for mesoscale multi-material 4D advanced additive manufacturing.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Polymers for Regenerative Medicine Structures Made via Multiphoton 3D Lithography
    Merkininkaite, Greta
    Gailevicius, Darius
    Sakirzanovas, Simas
    Jonusauskas, Linas
    INTERNATIONAL JOURNAL OF POLYMER SCIENCE, 2019, 2019
  • [2] Multiphoton Lithography of Nanocrystalline Platinum and Palladium for Site-Specific Catalysis in 3D Microenvironments
    Zarzar, Lauren D.
    Swartzentruber, B. S.
    Harper, Jason C.
    Dunphy, Darren R.
    Brinker, C. Jeffrey
    Aizenberg, Joanna
    Kaehr, Bryan
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (09) : 4007 - 4010
  • [3] 3D Printing of Regenerated Silk Fibroin and Antibody-Containing Microstructures via Multiphoton Lithography
    Dickerson, Matthew B.
    Dennis, Patrick B.
    Tondiglia, Vincent P.
    Nadeau, Lloyd J.
    Singh, Kristi M.
    Drummy, Lawrence F.
    Partlow, Benjamin P.
    Brown, Dean P.
    Omenetto, Fiorenzo G.
    Kaplan, David L.
    Naik, Rajesh R.
    ACS BIOMATERIALS SCIENCE & ENGINEERING, 2017, 3 (09): : 2064 - 2075
  • [4] Multiphoton Lithography of Organic Semiconductor Devices for 3D Printing of Flexible Electronic Circuits, Biosensors, and Bioelectronics
    Dadras-Toussi, Omid
    Khorrami, Milad
    Louis Sam Titus, Anto Sam Crosslee
    Majd, Sheereen
    Mohan, Chandra
    Abidian, Mohammad Reza
    ADVANCED MATERIALS, 2022, 34 (30)
  • [5] Multiphoton lithography with protein photoresists
    Sivun, Dmitry
    Murtezi, Eljesa
    Karimian, Tina
    Hurab, Kurt
    Marefat, Maryam
    Klimareva, Elena
    Naderer, Christoph
    Buchroithner, Boris
    Klar, Thomas A.
    Gvindzhiliia, Georgii
    Horner, Andreas
    Jacak, Jaroslaw
    MATERIALS TODAY BIO, 2024, 25
  • [6] Multiphoton-Polymerized 3D Protein Assay
    Wollhofen, Richard
    Axmann, Markus
    Freudenthaler, Peter
    Gabriel, Christian
    Roehrl, Clemens
    Stangl, Herbert
    Klar, Thomas A.
    Jacak, Jaroslaw
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (02) : 1474 - 1479
  • [7] 3D Fluorescence-Based Security Features by 3D Laser Lithography
    Mayer, Frederik
    Richter, Stefan
    Huebner, Philipp
    Jabbour, Toufic
    Wegener, Martin
    ADVANCED MATERIALS TECHNOLOGIES, 2017, 2 (11):
  • [8] 3D and 4D lithography of untethered microrobots
    Rajabasadi, Fatemeh
    Schwarz, Lukas
    Medina-Sancehz, Mariana
    Schmidt, Oliver G.
    PROGRESS IN MATERIALS SCIENCE, 2021, 120
  • [9] Lock release lithography for 3D and composite microparticles
    Bong, Ki Wan
    Pregibon, Daniel C.
    Doyle, Patrick S.
    LAB ON A CHIP, 2009, 9 (07) : 863 - 866
  • [10] Redox Multiphoton Polymerization for 3D Nanofabrication
    Kabouraki, Elmina
    Giakoumaki, Argyro N.
    Danilevicius, Paulius
    Gray, David
    Vamvakaki, Maria
    Farsari, Maria
    NANO LETTERS, 2013, 13 (08) : 3831 - 3835