Split-Hopkinson Pressure Bar Testing of Water with Partial Lateral Confinement

被引:0
|
作者
Li, K. S. O. [1 ]
Van Lerberghe, A. [1 ]
Barr, A. D. [1 ]
Dennis, A. A. [1 ]
Clarke, S. D. [1 ]
机构
[1] Univ Sheffield, Dept Civil & Struct Engn, Mappin St, Sheffield S1 3JD, England
基金
英国工程与自然科学研究理事会;
关键词
High-strain-rate testing; Split-Hopkinson pressure bar; Partial lateral confinement; LS-DYNA; SPH; Water; STRAIN-RATE; BEHAVIOR; SAND;
D O I
10.1007/s11340-024-01134-1
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
BackgroundFor the first time, the high-strain-rate behaviour of water is investigated experimentally and validated to LS-DYNA numerical simulations, using Smooth Particle Hydrodynamics (SPH).ObjectiveThis paper presents the application of a modified split-Hopkinson pressure bar (SHPB) fitted with a partial lateral confinement apparatus on a water specimen.MethodThe lateral confinement is provided by a water reservoir surrounding the specimen. A pressure transducer is installed in the reservoir wall to measure lateral stresses, and a dispersion correction algorithm, SHPB_Processing.py, is utilised to obtain accurate measurements of axial and radial stresses and strains.ResultsExperimental results underscore the capability of the modified apparatus to assess triaxial behaviour of water under high-strain rates. Comparisons with numerical modelling reveal that cohesion between water particles is non-existent, highlighting an intrinsic limitation in numerical modelling.ConclusionThese results highlight the capability to perform characterisation of fluids under high-strain rates. While limitations in numerical modelling still exist, numerical modelling and experimental testing using the modified apparatus can be applied to characterise fluid behaviour in the future.
引用
收藏
页码:195 / 203
页数:9
相关论文
共 50 条
  • [1] Design of a split Hopkinson pressure bar with partial lateral confinement
    Barr, Andrew D.
    Clarke, Sam D.
    Rigby, Sam E.
    Tyas, Andrew
    Warren, James A.
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2016, 27 (12)
  • [2] Split-Hopkinson pressure bar tests on pure tantalum
    Dick, RD
    Armstrong, RW
    Williams, JD
    SHOCK COMPRESSION OF CONDENSED MATTER - 1997, 1998, 429 : 471 - 474
  • [3] Numerical investigation of lateral inertia effect in dynamic impact testing of UHPC using a Split-Hopkinson pressure bar
    Ren, Liang
    Yu, Xianming
    He, Yu
    Wang, Kai
    Yao, Hongliang
    CONSTRUCTION AND BUILDING MATERIALS, 2020, 246
  • [4] The Effect of Specimen Dimension on the Results of the Split-Hopkinson Tension Bar Testing
    Prabowo, Dini A.
    Kariem, Muhammad A.
    Gunawan, Leonardo
    PLASTICITY AND IMPACT MECHANICS, 2017, 173 : 608 - 614
  • [5] Design of Inserts for Split-Hopkinson Pressure Bar Testing of Low Strain-to-Failure Materials
    Sunny, G.
    Yuan, F.
    Prakash, V.
    Lewandowski, J.
    EXPERIMENTAL MECHANICS, 2009, 49 (04) : 479 - 490
  • [6] Design of Inserts for Split-Hopkinson Pressure Bar Testing of Low Strain-to-Failure Materials
    G. Sunny
    F. Yuan
    V. Prakash
    J. Lewandowski
    Experimental Mechanics, 2009, 49
  • [7] Dispersion correction in split-Hopkinson pressure bar: theoretical and experimental analysis
    Bragov, Anatolii Mikhailovich
    Lomunov, Andrei Kirillovich
    Lamzin, Dmitrii Aleksandrovich
    Konstantinov, Aleksandr Yurevich
    CONTINUUM MECHANICS AND THERMODYNAMICS, 2022, 34 (04) : 895 - 907
  • [8] Dispersion correction in split-Hopkinson pressure bar: theoretical and experimental analysis
    Anatolii Mikhailovich Bragov
    Andrei Kirillovich Lomunov
    Dmitrii Aleksandrovich Lamzin
    Aleksandr Yurevich Konstantinov
    Continuum Mechanics and Thermodynamics, 2022, 34 : 895 - 907
  • [9] Development of the split-Hopkinson pressure bar technique for viscous fluid characterization
    Lim, Amanda S.
    Lopatnikov, Sergey L.
    Gillespie, John W., Jr.
    POLYMER TESTING, 2009, 28 (08) : 891 - 900
  • [10] On the use of non-cylindrical specimens in a split-Hopkinson pressure bar
    Sen, O.
    Tekalur, S. A.
    Maity, P.
    JOURNAL OF STRAIN ANALYSIS FOR ENGINEERING DESIGN, 2011, 46 (08): : 866 - 878