On ZprZpsZpt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}_{p^r} \mathbb {Z}_{p^s} \mathbb {Z}_{p^t}$$\end{document}-additive cyclic codes exhibit asymptotically good properties

被引:0
作者
Mousumi Ghosh [1 ]
Sachin Pathak [2 ]
Dipendu Maity [1 ]
机构
[1] IIIT Guwahati,Department of Science and Mathematics
[2] NIIT University,Department of Mathematics and Basic Sciences
关键词
Additive cyclic codes; Relative distance; Rate; Asymptotically good codes; 94B05; 94B60;
D O I
10.1007/s12095-024-00737-8
中图分类号
学科分类号
摘要
In this paper, we construct a class of ZprZpsZpt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}_{p^r}\mathbb {Z}_{p^s}\mathbb {Z}_{p^t}$$\end{document}-additive cyclic codes generated by 3-tuples of polynomials, where p is a prime number and 1≤r≤s≤t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1 \le r \le s \le t$$\end{document}. We investigate the algebraic structure of these codes and establish that it is possible to determine generator matrices for a subfamily of codes within this class. We employ a probabilistic approach to analyze the asymptotic properties of these codes. For any positive real number δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document} satisfying 0<δ<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0< \delta < 1$$\end{document} such that the asymptotic Gilbert-Varshamov bound at k+l+n3pr-1δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( \frac{k+l+n}{3p^{r-1}}\delta \right) $$\end{document} is greater than 12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{1}{2}$$\end{document}, we demonstrate that the relative distance of the random code converges to δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document}, while the rate of the random code converges to 1k+l+n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{1}{k+l+n}$$\end{document}. Finally, we conclude that the ZprZpsZpt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}_{p^r}\mathbb {Z}_{p^s}\mathbb {Z}_{p^t}$$\end{document}-additive cyclic codes exhibit asymptotically good properties.
引用
收藏
页码:1559 / 1580
页数:21
相关论文
empty
未找到相关数据