Dissecting van der Waals interactions with density functional theory - Wannier-basis approach

被引:0
作者
Dang, Diem Thi-Xuan [1 ]
Le, Dai-Nam [1 ]
Woods, Lilia M. [1 ]
机构
[1] Univ S Florida, Dept Phys, Tampa, FL 33620 USA
关键词
DIELECTRIC-CONSTANT; GENERAL THEORY; ENERGY; MOLECULES; TOOL;
D O I
10.1016/j.cpc.2025.109525
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A new scheme for the computation of dispersive interactions from first principles is presented. This cost-effective approach relies on a Wannier function representation compatible with density function theory descriptions. This is an electronic-based many-body method that captures the full electronic and optical response properties of the materials. It provides the foundation to discern van der Waals and induction energies as well as the role of anisotropy and different stacking patterns when computing dispersive interactions in systems. Calculated results for binding energies in benchmarked materials and layered materials, such as graphite, hBN, and MoS2 give encouraging comparisons with available experimental data. Strategies for broadened computational descriptions of dispersive interactions are also discussed. Our investigation aims at stimulating new experimental studies to measure van der Waals energies in a wider range of materials, especially in layered systems.
引用
收藏
页数:10
相关论文
共 50 条
  • [2] Long-Range van der Waals Interactions in Density Functional Theory
    J. A. Alonso
    A. Mañanes
    Theoretical Chemistry Accounts, 2007, 117 : 467 - 472
  • [3] van der Waals Interactions in Density-Functional Theory: Intermolecular Complexes
    Kannemann, Felix O.
    Becke, Axel D.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2010, 6 (04) : 1081 - 1088
  • [4] Long-range van der Waals interactions in density functional theory
    Alonso, J. A.
    Mananes, A.
    THEORETICAL CHEMISTRY ACCOUNTS, 2007, 117 (04) : 467 - 472
  • [5] Water monomer interaction with gold nanoclusters from van der Waals density functional theory
    Xue, Yongqiang
    JOURNAL OF CHEMICAL PHYSICS, 2012, 136 (02)
  • [6] Assessment of van der Waals inclusive density functional theory methods for layered electroactive materials
    Lozano, Ariel
    Escribano, Bruno
    Akhmatskaya, Elena
    Carrasco, Javier
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2017, 19 (15) : 10133 - 10139
  • [7] Density Functional Model for van der Waals Interactions: Unifying Many-Body Atomic Approaches with Nonlocal Functionals
    Hermann, Jan
    Tkatchenko, Alexandre
    PHYSICAL REVIEW LETTERS, 2020, 124 (14)
  • [8] Density, structure, and dynamics of water: The effect of van der Waals interactions
    Wang, Jue
    Roman-Perez, G.
    Soler, Jose M.
    Artacho, Emilio
    Fernandez-Serra, M. -V.
    JOURNAL OF CHEMICAL PHYSICS, 2011, 134 (02)
  • [9] Nanoscale van der Waals interactions
    Cole, Milton W.
    Velegol, Darrell
    Kim, Hye-Young
    Lucas, Amand A.
    MOLECULAR SIMULATION, 2009, 35 (10-11) : 849 - 866
  • [10] Effects of van der Waals Dispersion Interactions in Density Functional Studies of Adsorption, Catalysis, and Tribology on Metals
    Yuan, Dingwang
    Zhang, Yanning
    Ho, Wilson
    Wu, Ruqian
    JOURNAL OF PHYSICAL CHEMISTRY C, 2020, 124 (31) : 16926 - 16942