Marine Flavobacteriaceae produce zeaxanthin via the mevalonate pathway

被引:1
作者
Chen, Yuerong [1 ]
Xie, Jianmin [1 ]
Yang, Min [1 ]
Cai, Runlin [1 ]
Cai, Chao [1 ]
Gan, Yongliang [1 ]
Aweya, Jude Juventus [2 ]
Cai, Guanjing [1 ]
Wang, Hui [1 ]
机构
[1] Shantou Univ, Coll Sci, Guangdong Prov Key Lab Marine Biol, Shantou 515063, Peoples R China
[2] Jimei Univ, Coll Ocean Food & Biol Engn, Fujian Prov Key Lab Food Microbiol & Enzyme Engn, Xiamen 361021, Peoples R China
基金
中国国家自然科学基金;
关键词
Zeaxanthin; Flavobacteriaceae; Marine environments; Mevalonate pathway; ISOPRENOID BIOSYNTHESIS; GENE-EXPRESSION; SP NOV; EVOLUTION; ALGORITHM; KINASE; GROWTH; PCR; OPTIMIZATION; ANNOTATION;
D O I
10.1007/s42995-024-00268-4
中图分类号
Q17 [水生生物学];
学科分类号
071004 ;
摘要
Zeaxanthin, an oxygenated carotenoid derivative with potent antioxidative properties, is produced by many organism taxa. Flavobacteriaceae are widely distributed in marine environments; however, the zeaxanthin biosynthesis property in this family remains incompletely explored. Here, we characterized zeaxanthin production by marine Flavobacteriaceae strains and elucidated underlying molecular mechanisms. Eight Flavobacteriaceae strains were isolated from the phycosphere of various dinoflagellates. Analyses of the zeaxanthin production in these strains revealed yields ranging from 5 to 3289 mu g/g of dry cell weight. Genomic and molecular biology analyses revealed the biosynthesized zeaxanthin through the mevalonate (MVA) pathway diverging from the 2-C-methyl-d-erythritol-4-phosphate (MEP) pathway commonly observed in most Gram-negative bacteria. Furthermore, comprehensive genome analyses of 322 culturable marine Flavobacteriale strains indicated that the majority of Flavobacteriaceae members possess the potential to synthesize zeaxanthin using precursors derived from the MVA pathway. These data provide insight into the zeaxanthin biosynthesis property in marine Flavobacteriaceae strains, highlighting their ecological and biotechnological relevance.
引用
收藏
页码:132 / 143
页数:12
相关论文
共 77 条
[21]   Comparative genomic analysis ofFlavobacteriaceae: insights into carbohydrate metabolism, gliding motility and secondary metabolite biosynthesis [J].
Gavriilidou, Asimenia ;
Gutleben, Johanna ;
Versluis, Dennis ;
Forgiarini, Francesca ;
van Passel, Mark W. J. ;
Ingham, Colin J. ;
Smidt, Hauke ;
Sipkema, Detmer .
BMC GENOMICS, 2020, 21 (01)
[22]   Siansivirga zeaxanthinifaciens gen. nov., sp nov., a novel zeaxanthin-producing member of the family Flavobacteriaceae isolated from coastal seawater of Taiwan [J].
Hameed, Asif ;
Shahina, Mariyam ;
Lin, Shih-Yao ;
Sridhar, Kandikere Ramaiah ;
Young, Li-Sen ;
Lee, Maw-Rong ;
Chen, Wen-Ming ;
Chou, Jui-Hsing ;
Young, Chiu-Chung .
FEMS MICROBIOLOGY LETTERS, 2012, 333 (01) :37-45
[23]   Supercritical Carbon Dioxide Micronization of Zeaxanthin from Moderately Thermophilic Bacteria Muricauda lutaonensis CC-HSB-11T [J].
Hameed, Asif ;
Arun, A. B. ;
Ho, Hsin-Pin ;
Chang, Chieh-Ming J. ;
Rekha, P. D. ;
Lee, Maw-Rong ;
Singh, Satnam ;
Young, Chiu-Chung .
JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2011, 59 (08) :4119-4124
[24]   Marine Bacteria versus Microalgae: Who Is the Best for Biotechnological Production of Bioactive Compounds with Antioxidant Properties and Other Biological Applications? [J].
Hamidi, Masoud ;
Kozani, Pouya Safarzadeh ;
Kozani, Pooria Safarzadeh ;
Pierre, Guillaume ;
Michaud, Philippe ;
Delattre, Cedric .
MARINE DRUGS, 2020, 18 (01)
[25]   Fast Genome-Wide Functional Annotation through Orthology Assignment by eggNOG-Mapper [J].
Huerta-Cepas, Jaime ;
Forslund, Kristoffer ;
Coelho, Luis Pedro ;
Szklarczyk, Damian ;
Jensen, Lars Juhl ;
von Mering, Christian ;
Bork, Peer .
MOLECULAR BIOLOGY AND EVOLUTION, 2017, 34 (08) :2115-2122
[26]   CHROMOPROTEIN-DEPENDENT AND PIGMENT-DEPENDENT MODELING OF SPECTRAL LIGHT-ABSORPTION IN 2 DINOFLAGELLATES, PROROCENTRUM-MINIMUM AND HETEROCAPSA-PYGMAEA [J].
JOHNSEN, G ;
NELSON, NB ;
JOVINE, RVM ;
PREZELIN, BB .
MARINE ECOLOGY PROGRESS SERIES, 1994, 114 (03) :245-258
[27]   Modelling and optimization of zeaxanthin production by Paracoccus zeaxanthinifaciens ATCC 21588 using hybrid genetic algorithm techniques [J].
Joshi, Chetan ;
Singhal, Rekha S. .
BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY, 2016, 8 :228-235
[28]   Polysaccharide utilization loci of North Sea Flavobacteriia as basis for using SusC/D-protein expression for predicting major phytoplankton glycans [J].
Kappelmann, Lennart ;
Krueger, Karen ;
Hehemann, Jan-Hendrik ;
Harder, Jens ;
Markert, Stephanie ;
Unfried, Frank ;
Becher, Doerte ;
Shapiro, Nicole ;
Schweder, Thomas ;
Amann, Rudolf I. ;
Teeling, Hanno .
ISME JOURNAL, 2019, 13 (01) :76-91
[29]   MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability [J].
Katoh, Kazutaka ;
Standley, Daron M. .
MOLECULAR BIOLOGY AND EVOLUTION, 2013, 30 (04) :772-780
[30]   Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species [J].
Kim, Ok-Sun ;
Cho, Yong-Joon ;
Lee, Kihyun ;
Yoon, Seok-Hwan ;
Kim, Mincheol ;
Na, Hyunsoo ;
Park, Sang-Cheol ;
Jeon, Yoon Seong ;
Lee, Jae-Hak ;
Yi, Hana ;
Won, Sungho ;
Chun, Jongsik .
INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY, 2012, 62 :716-721