Flexural behavior of natural fiber-reinforced foamed concrete beams

被引:0
|
作者
Kusum Saini [1 ]
Saverio Spadea [2 ]
Vasant A. Matsagar [3 ]
机构
[1] Indian Institute of Technology (IIT) Delhi,Department of Civil Engineering
[2] Polytechnic Univesity of Bari,Department of Civil, Environmental, Land, Building Engineering, and Chemistry (DICATECh)
[3] University of Dundee,School of Science and Engineering
来源
关键词
Flexural behavior; Foamed concrete; Multi-fiber model; Natural fiber; Roselle fiber;
D O I
10.1007/s44150-024-00114-2
中图分类号
学科分类号
摘要
Climate change has become a worldwide problem, and many conventional construction materials contribute to carbon emissions. Therefore, the need for sustainable infrastructure has progressed with the increasing use of various plant-based natural fibers for structural applications. This study assesses the feasibility and performance of using natural fiber rope-based reinforcement in foamed concrete structures. The flexural behavior of foamed concrete beams reinforced with the roselle fiber rope-based reinforcement is investigated using finite element (FE) analysis-based numerical and code-based simplified analytical approaches. In the FE model, beams are discretized along the length and depth with a multi-fiber model approach. The nonlinear constitutive behavior of the concrete is taken as per the design standards, and the material properties of natural fiber-based reinforcement, i.e., roselle fiber and roselle fiber rope, are obtained experimentally. The bond-slip behavior between reinforcement and concrete is also implemented using Eligehausen’s law. Furthermore, the influence of the elastic modulus of the reinforcement, span length, and reinforcement ratio on the flexural capacity and deflection of the beams is investigated. The study provides an understanding of roselle fibers and roselle fiber rope in terms of tensile strengths and stiffness to explore their suitability as reinforcement materials. Moreover, it is shown that roselle fiber rope-based reinforcement increases the load-carrying capacity of reinforced foamed concrete beams by approximately 90% (depending upon the elastic modulus of the reinforcement) compared to plain foamed concrete beams. This significant improvement underscores the potential of roselle fiber ropes as an alternative to steel or synthetic fiber-based reinforcement in concrete beams subjected to relatively low-magnitude loads, providing a clear conclusion and recommendation based on the findings of the study.
引用
收藏
页码:157 / 172
页数:15
相关论文
共 50 条
  • [1] Flexural Behavior of Reinforced Concrete Beams Strengthened with Composite Carbon Fiber-Reinforced
    Fernandez-Davila, V., I
    Gutierrez, M. M.
    Samaniego, J. D.
    Bazan, J. L.
    Santa-Cruz, S. C.
    ACI STRUCTURAL JOURNAL, 2022, 119 (03) : 221 - 231
  • [2] FLEXURAL BEHAVIOR OF HIGH-STRENGTH FIBER-REINFORCED CONCRETE BEAMS
    ASHOUR, SA
    WAFA, FF
    ACI STRUCTURAL JOURNAL, 1993, 90 (03) : 279 - 287
  • [3] Tensile strength and flexural behavior of steel fiber-reinforced concrete beams
    Lolla, Srilakshmi
    Oinam, Romanbabu M.
    Furtado, A.
    Varum, H.
    STRUCTURAL CONCRETE, 2024,
  • [4] Flexural behavior of concrete beams reinforced with glass fiber-reinforced polymer (GFRP) bars
    Toutanji, HA
    Saafi, M
    ACI STRUCTURAL JOURNAL, 2000, 97 (05) : 712 - 719
  • [5] Flexural Behavior of Steel Fiber-Reinforced Lightweight Aggregate Concrete Beams Reinforced with Glass Fiber-Reinforced Polymer Bars
    Wu, Tao
    Sun, Yijia
    Liu, Xi
    Wei, Hui
    JOURNAL OF COMPOSITES FOR CONSTRUCTION, 2019, 23 (02)
  • [6] Flexural Behavior of Corroded Concrete Beams Strengthened with Carbon Fiber-Reinforced Polymer
    Wang, Yiyuan
    Wu, Jin
    MATERIALS, 2023, 16 (12)
  • [7] FLEXURAL BEHAVIOR OF CONCRETE BEAMS PRETENSIONED WITH ARAMID FIBER-REINFORCED PLASTIC TENDONS
    MCKAY, KS
    ERKI, MA
    CANADIAN JOURNAL OF CIVIL ENGINEERING, 1993, 20 (04) : 688 - 695
  • [8] Flexural Cracks in Fiber-Reinforced Concrete Beams with Fiber-Reinforced Polymer Reinforcing Bars
    Lee, Won K.
    Jansen, Daniel C.
    Berlin, Kenneth B.
    Cohen, Ian E.
    ACI STRUCTURAL JOURNAL, 2010, 107 (03) : 321 - 329
  • [9] Flexural behavior of steel fiber-reinforced coal gangue aggregate concrete beams
    Cai, Bin
    Li, Kaiyi
    Fu, Feng
    STRUCTURES, 2023, 52 : 131 - 145
  • [10] Experimental and analytical study of the flexural behavior of basalt fiber-reinforced concrete beams
    Li, Zhihua
    Ma, Chengfei
    Guo, Xuan
    STRUCTURAL CONCRETE, 2023, 24 (02) : 2342 - 2362