Nilpotent Values Induced by Generalized Skew Derivations Acting on Lie Ideals

被引:0
|
作者
Dhara, B. [1 ]
Garg, C. [2 ]
机构
[1] Belda Coll, Dept Math, Belda, India
[2] Univ Delhi, Deshbandhu Coll, Dept Math, New Delhi, India
关键词
prime ring; generalized skew derivation; Lie ideal; extended centroid; automorphism; 512.552.16; DIFFERENTIAL IDENTITIES; PRIME; AUTOMORPHISMS;
D O I
10.1134/S0037446625010112
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ R $\end{document} denote a prime ring with characteristic not 2, let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ n\geq 1 $\end{document} be a fixed integer, let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ L $\end{document} be a Lie ideal of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ R $\end{document}, and let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ C $\end{document} be the extended centroid of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ R $\end{document}. Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ F $\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ G $\end{document} represent two generalized skew derivations of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ R $\end{document} satisfying \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ (F(xy)-G(x)y-yx)<^>{n}=0 $\end{document} for all \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ x,y\in L $\end{document}. Then \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ L $\end{document} is central, unless \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ R $\end{document} satisfies the standard polynomial identity \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ s_{4}(x_{1},\dots,x_{4})=0 $\end{document}.
引用
收藏
页码:118 / 128
页数:11
相关论文
共 50 条
  • [1] Generalized skew derivations with nilpotent values on Lie ideals
    Chang, Jui-Chi
    MONATSHEFTE FUR MATHEMATIK, 2010, 161 (02): : 155 - 160
  • [2] Generalized Skew Derivations and Nilpotent Values on Lie Ideals
    De Filippis, Vincenzo
    Di Vincenzo, Onofrio Mario
    ALGEBRA COLLOQUIUM, 2019, 26 (04) : 589 - 614
  • [3] Generalized skew derivations with nilpotent values on Lie ideals
    Jui-Chi Chang
    Monatshefte für Mathematik, 2010, 161 : 155 - 160
  • [4] A result concerning nilpotent values with generalized skew derivations on Lie ideals
    Sharma, R. K.
    Dhara, B.
    De Filippis, V.
    Garg, C.
    COMMUNICATIONS IN ALGEBRA, 2018, 46 (12) : 5330 - 5341
  • [5] Generalized Derivations with Skew Nilpotent Values on Lie Ideals
    徐晓伟
    马晶
    牛凤文
    NortheasternMathematicalJournal, 2006, (02) : 241 - 252
  • [6] GENERALIZED SKEW DERIVATIONS WITH POWER CENTRAL VALUES ON LIE IDEALS
    Chang, Jui-Chi
    COMMUNICATIONS IN ALGEBRA, 2011, 39 (06) : 2241 - 2248
  • [7] A note on generalized skew derivations on Lie ideals
    Ashraf, Mohammad
    De Filippis, Vincenzo
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2018, 128 (02):
  • [8] Certain functional identities involving a pair of generalized skew derivations with nilpotent values on Lie ideals
    De Filippis, Vincenzo
    Rehman, Nadeem ur
    Scudo, Giovanni
    COMMUNICATIONS IN ALGEBRA, 2023, 51 (02) : 711 - 723
  • [9] Annihilators of Power Central Values of Generalized Skew Derivations on Lie Ideals
    Yarbil, Nihan Baydar
    Argac, Nurcan
    IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS, 2024, 19 (01): : 35 - 49
  • [10] Annihilators and Power Values of Generalized Skew Derivations on Lie Ideals
    De Filippis, Vincenzo
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2016, 59 (02): : 258 - 270