Segmentation, classification and interpretation of breast cancer medical images using human-in-the-loop machine learning

被引:0
作者
David Vázquez-Lema [1 ]
Eduardo Mosqueira-Rey [1 ]
Elena Hernández-Pereira [1 ]
Carlos Fernandez-Lozano [1 ]
Fernando Seara-Romera [1 ]
Jorge Pombo-Otero [2 ]
机构
[1] Department of Computer Science and Information Technologies, Universidade da Coruña (CITIC), Campus de Elviña, Galicia, A Coruña
[2] Servicio de Anatomía Patológica, Complejo Hospitalario Universitario de A Coruña (CHUAC), As Xubias, 84, A Coruña
关键词
Breast cancer; Classification; Human-in-the-loop; Interpretation; Segmentation;
D O I
10.1007/s00521-024-10799-7
中图分类号
学科分类号
摘要
This paper explores the application of Human-in-the-Loop (HITL) strategies in the training of machine learning models in the medical domain. In this case, a doctor-in-the-loop approach is proposed to leverage human expertise in dealing with large and complex data. Specifically, the paper deals with the use of Whole Slide Imaging (WSI) for the analysis and prediction of the genomic subtype of breast cancer. Three different tasks were developed: segmentation of histopathological images, classification of these images regarding the genomic subtype of the cancer, and finally, interpretation of the machine learning results. The involvement of a pathologist helped us to develop a better segmentation model trying to group areas to make it more useful for further diagnosis. Because the classification models underperformed due to the complexity of the problem and insufficient data for certain cancer types, we focus our efforts in using the feedback from the pathologist to enhance model interpretability through a HITL hyperparameter optimization process. © The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024.
引用
收藏
页码:3023 / 3045
页数:22
相关论文
共 50 条
  • [1] Using Segmentation to Improve Machine Learning Performance in Human-in-the-Loop Systems
    Carneiro, Davide
    Carvalho, Mariana
    INTELLIGENT SYSTEMS AND APPLICATIONS, VOL 2, 2023, 543 : 413 - 428
  • [2] A survey of human-in-the-loop for machine learning
    Wu, Xingjiao
    Xiao, Luwei
    Sun, Yixuan
    Zhang, Junhang
    Ma, Tianlong
    He, Liang
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2022, 135 : 364 - 381
  • [3] Automated breast cancer segmentation and classification in mammogram images using deep learning approach
    Dhanalaxmi, B.
    Venkatesh, N.
    Raju, Yeligeti
    Naik, G. Jagan
    Rao, Channapragada Rama Seshagiri
    Tulasi, V. Prema
    INTERNATIONAL JOURNAL OF BIOMEDICAL ENGINEERING AND TECHNOLOGY, 2025, 47 (02) : 165 - 193
  • [4] Continual learning classification method with human-in-the-loop
    Liu, Jia
    Li, Dong
    Shan, Wangweiyi
    Liu, Shulin
    METHODSX, 2023, 11
  • [5] A unified microstructure segmentation approach via human-in-the-loop machine learning
    Na, Juwon
    Kim, Se-Jong
    Kim, Heekyu
    Kang, Seong-Hoon
    Lee, Seungchul
    ACTA MATERIALIA, 2023, 255
  • [6] A Review of Machine Learning Techniques for the Classification and Detection of Breast Cancer from Medical Images
    Jalloul, Reem
    Chethan, H. K.
    Alkhatib, Ramez
    DIAGNOSTICS, 2023, 13 (14)
  • [7] Segmentation and Classification for Breast Cancer Ultrasound Images Using Deep Learning Techniques: A Review
    Jahwar, Alan Fuad
    Abdulazeez, Adnan Mohsin
    2022 IEEE 18TH INTERNATIONAL COLLOQUIUM ON SIGNAL PROCESSING & APPLICATIONS (CSPA 2022), 2022, : 225 - 230
  • [8] Human-in-the-loop machine learning: a state of the art
    Mosqueira-Rey, Eduardo
    Hernandez-Pereira, Elena
    Alonso-Rios, David
    Bobes-Bascaran, Jose
    Fernandez-Leal, Angel
    ARTIFICIAL INTELLIGENCE REVIEW, 2023, 56 (04) : 3005 - 3054
  • [9] Breast Cancer Type Classification Using Machine Learning
    Wu, Jiande
    Hicks, Chindo
    JOURNAL OF PERSONALIZED MEDICINE, 2021, 11 (02): : 1 - 12
  • [10] Using machine learning tool in classification of breast cancer
    Abdel-Ilah, Layla
    Sahinbegovic, Hana
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON MEDICAL AND BIOLOGICAL ENGINEERING 2017 (CMBEBIH 2017), 2017, 62 : 3 - 8