Lie Affgebras Vis-à-Vis Lie Algebras

被引:0
作者
Andruszkiewicz, Ryszard R. [1 ]
Brzezinski, Tomasz [1 ,2 ]
Radziszewski, Krzysztof [3 ,4 ]
机构
[1] Univ Bialystok, Fac Math, K Ciolkowskiego 1 M, PL-15245 Bialystok, Poland
[2] Swansea Univ, Dept Math, Fabian Way, Swansea SA1 8EN, Wales
[3] Univ Bialystok, Doctoral Sch, PL-15245 Bialystok, Poland
[4] Univ Bialystok, Fac Math, PL-15245 Bialystok, Poland
关键词
Lie algebra; Lie affgebra; generalized derivation; quasicentroid; AV-DIFFERENTIAL GEOMETRY; GENERALIZED DERIVATIONS;
D O I
10.1007/s00025-025-02377-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is shown that any Lie affgebra, that is an algebraic system consisting of an affine space together with a bi-affine multiplication satisfying affine versions of the antisymmetry and Jacobi identity, is isomorphic to a Lie algebra together with an element and a specific generalized derivation (in the sense of Leger and Luks in J Algebra 228:165-203, 2000). These Lie algebraic data can be taken for the construction of a Lie affgebra or, conversely, they can be uniquely derived for any Lie algebra fibre of the Lie affgebra. The close relationship between Lie affgebras and (enriched by the additional data) Lie algebras can be employed to attempt a classification of the former by the latter. In particular, up to isomorphism, a complex Lie affgebra with a simple Lie algebra fibre g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {g}$$\end{document} is fully determined by a scalar and an element of g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {g}$$\end{document} fixed up to an automorphism of g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {g}$$\end{document}, and it can be universally embedded in a trivial extension of g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {g}$$\end{document} by a derivation. The study is illustrated by a number of examples that include all Lie affgebras with one-dimensional, non-abelian two-dimensional, sl(2,C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {s}\mathfrak {l}(2,\mathbb {C})$$\end{document} and so(3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {s}\mathfrak {o}(3)$$\end{document} Lie algebra fibres. Extensions of Lie affgebras by cocycles and their relation to cocycle extensions of tangent Lie algebras is briefly discussed and illustrated by Lie affgebras with the Witt and Virasoro algebra fibres.
引用
收藏
页数:27
相关论文
共 22 条
[1]   Ideal ring extensions and trusses [J].
Andruszkiewicz, Ryszard R. ;
Brzezinski, Tomasz ;
Rybolowicz, Bernard .
JOURNAL OF ALGEBRA, 2022, 600 :237-278
[2]  
[Anonymous], 1979, Lie Algebras
[3]  
Baer R, 1929, J REINE ANGEW MATH, V160, P199
[4]   The groups of automorphisms of the Witt W n and Virasoro Lie algebras [J].
Bavula, Vladimir V. .
CZECHOSLOVAK MATHEMATICAL JOURNAL, 2016, 66 (04) :1129-1141
[5]   Heaps of modules and affine spaces [J].
Breaz, Simion ;
Brzezinski, Tomasz ;
Rybolowicz, Bernard ;
Saracco, Paolo .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2024, 203 (01) :403-445
[6]  
Brzezinski T., Contemp. Math
[7]   Special Normalised Affine Matrices: An Example of a Lie Affgebra [J].
Brzezinski, Tomasz .
GEOMETRIC METHODS IN PHYSICS XL, WGMP 2022, 2024, :115-125
[8]  
Brzeziski T., 2023, Bul. Belgian Math. Soc. Simon Stevin, V30, P683
[9]  
Burde D, 2013, MOSC MATH J, V13, P1
[10]   COHOMOLOGY THEORY OF LIE GROUPS AND LIE ALGEBRAS [J].
CHEVALLEY, C ;
EILENBERG, S .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1948, 63 (JAN) :85-124