共 65 条
- [1] Acosta-Sequeda J., Derrible S., GTdownloader: a python package to download, visualize, and export georeferenced tweets from the Twitter API, J Open Res Softw, (2023)
- [2] Agarwal A., Jasneet S., End-to-end sentiment analysis of Twitter data, Proceedings of the workshop on information extraction and entity analytics on social media data. The COLING 2012 Organizing Committee, pp. 39-44, (2012)
- [3] Aisopos F., George P., Theodora V., Sentiment analysis of social media content using N-gram graphs, Proceedings of the 3rd ACM SIGMM international workshop on social media. WSM ’11, pp. 9-14, (2011)
- [4] Aston N., Liddle J., Wei H., Twitter sentiment in data streams with perceptron, J Comput Commun, (2014)
- [5] Bakliwal A., Piyush A., Senthil M., Nikhil K., Mukesh S., Vasudeva V., Mining sentiments from Tweets, Proc. of the 3rd workshop in computational approaches to subjectivity and sentiment analysis, (2012)
- [6] Balabantaray R.C., Mohd M., Sharma N., Multi-class twitter emotion classification: a new approach, Int J Appl Inf Syst, 4, September, pp. 48-53, (2012)
- [7] Balbontin C., Hensher D.A., Beck M.J., Advanced modelling of commuter choice model and work from home during COVID-19 restrictions in Australia, Transp Res Part E: Logist Transp Rev, 162, June, (2022)
- [8] Barbosa L., Junlan F., Robust sentiment detection on twitter from biased and noisy data, Coling 2010: Posters. Coling, 2010, pp. 36-44, (2010)
- [9] Beck M.J., Hensher D.A., Working from home in Australia in 2020: positives, negatives and the potential for future benefits to transport and society, Transp Res Part a: Policy Pract, 158, April, pp. 271-284, (2022)
- [10] Bollen J., Mao H., Zeng X., Twitter mood predicts the stock market, J Comput Sci, 2, 1, pp. 1-8, (2011)