Invariant Closed Ideals for Upper-Triangular Positive Operators

被引:0
作者
Liu, J. [1 ]
机构
[1] Zhejiang Univ Sci & Technol, Sch Sci, Dept Math, Hangzhou 310023, Zhejiang, Peoples R China
关键词
l(p)-space; positive operator; upper-triangular operator; invariant closed ideal; invariant closed subspace; SUBSPACES;
D O I
10.1134/S0001434624110166
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, it is shown that all upper-triangular positive operators on an l(p)-space (1 <= p < infinity) have (infinitely many) common nontrivial invariant closed ideals.
引用
收藏
页码:1047 / 1050
页数:4
相关论文
共 9 条
  • [1] Halmos P.R., A Hilbert Space Problem Book, 19, (1982)
  • [2] Abramovich Y.A., Aliprantis C.D., Burkinshaw O., Invariant subspaces of operators on -spaces, J. Funct. Anal, 115, 2, pp. 418-424, (1993)
  • [3] Liu M., Liu P., Modulus hyperinvariant subspaces for quasinilpotent operators at a non-zero positive vector on -spaces, Arch. Math, 88, 6, pp. 537-546, (2007)
  • [4] Aronszajn N., Smith K.T., Invariant subspaces of completely continuous operators, Ann. Math. (2), 60, pp. 345-350, (1954)
  • [5] Pagter B.D., Irreducible compact operators, Math. Z, 192, pp. 149-153, (1986)
  • [6] Gamal' M.F., On polynomially bounded operators with shift-type invariant subspaces, J. Oper. Theory, 87, 2, pp. 251-270, (2022)
  • [7] Liu J., Modulus hyperinvariant ideals for a finitely quasinilpotent operators, Filomat, 33, 15, pp. 4717-4720, (2019)
  • [8] Liu J., Hyperinvariant closed ideals for a finitely quasinilpotent collection of operators, Math. Notes, 112, 2, pp. 286-293, (2022)
  • [9] Liu M., Invariant subspaces for sequentially subdecomposable operators, Sci. China, Ser. A, 46, 4, pp. 433-439, (2003)