A Fourier multiplier theorem on anisotropic Hardy spaces associated with ball quasi-Banach function spaces

被引:1
作者
Yan, Xianjie [1 ]
Jia, Hongchao [1 ]
Yang, Dachun [2 ]
机构
[1] Henan Univ, Inst Contemporary Math, Sch Math & Stat, Kaifeng 475004, Peoples R China
[2] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ China, Beijing 100875, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Expansive matrix; Fourier multiplier; Mihlin condition; Ball quasi-Banach function space; Anisotropic Hardy space; REAL-VARIABLE CHARACTERIZATIONS; ATOMIC DECOMPOSITION; SINGULAR-INTEGRALS; LORENTZ SPACES; BOUNDEDNESS; DUALITY;
D O I
10.1007/s43034-024-00396-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let A be a general expansive matrix. Let X be a ball quasi-Banach function space on Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}<^>n$$\end{document}, which supports both a Fefferman-Stein vector-valued maximal inequality and the boundedness of the powered Hardy-Littlewood maximal operator on its associate space. The authors first establish the boundedness of convolutional anisotropic Calder & oacute;n-Zygmund operators on the Hardy space HXA(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_X<^>A(\mathbb {R}<^>n)$$\end{document}. As an application, the authors also obtain the boundedness of Fourier multipliers satisfying anisotropic Mihlin conditions on HXA(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_X<^>A(\mathbb {R}<^>n)$$\end{document}. All these results have a wide range of applications; in particular, when they are applied to Lebesgue spaces, all these results reduce back to the known best results and, even when they are applied to Lorentz spaces, variable Lebesgue spaces, Orlicz spaces, Orlicz-slice spaces, and local generalized Herz spaces, the obtained results are also new.
引用
收藏
页数:37
相关论文
共 83 条
[1]   Fourier Multipliers for Hardy Spaces of Dirichlet Series [J].
Aleman, Alexandru ;
Olsen, Jan-Fredrik ;
Saksman, Eero .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2014, 2014 (16) :4368-4378
[2]   Anisotropic Hardy-Lorentz Spaces with Variable Exponents [J].
Almeida, Victor ;
Betancor, Jorge J. ;
Rodriguez-Mesa, Lourdes .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2017, 69 (06) :1219-1273
[3]  
[Anonymous], 1956, Dokl. Akad. Nauk SSSR (N.S.)
[4]  
BAERNSTEIN A, 1985, MEM AM MATH SOC, V53, P1
[5]   Anisotropic Weak Hardy Spaces and Wavelets [J].
Barrios, B. ;
Betancor, J. J. .
JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2012,
[6]  
Bennett C., 1988, Pure and Applied Mathematics, V129
[7]   Atomic and molecular decompositions of anisotropic Triebel-Lizorkin spaces [J].
Bownik, M ;
Ho, KP .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 358 (04) :1469-1510
[8]  
Bownik M, 2003, MEM AM MATH SOC, V164, P1
[9]   Duality and interpolation of anisotropic Triebel-Lizorkin spaces [J].
Bownik, Marcin .
MATHEMATISCHE ZEITSCHRIFT, 2008, 259 (01) :131-169
[10]   A partial differential equation characterization of anisotropic Hardy spaces [J].
Bownik, Marcin ;
Wang, Li-An Daniel .
MATHEMATISCHE NACHRICHTEN, 2023, 296 (06) :2258-2275