Precision storage lifetime measurements of highly charged heavy ions in the CSRe storage ring using a Schottky resonator

被引:1
作者
Wang, Qian [1 ]
Yan, Xin-Liang [1 ,2 ]
Zhu, Guang-Yu [1 ]
Sanjari, Shahab [3 ,4 ]
Mao, Li-Jun [1 ,2 ]
Zhao, He [1 ,2 ]
Litvinov, Yuri A. [3 ]
Chen, Rui-Jiu [3 ]
Wang, Meng [1 ,2 ]
Zhang, Yu-Hu [1 ,2 ]
Yuan, You-Jin [1 ,2 ]
Wu, Jun-Xia [1 ,2 ]
Jiao, Hong-Yang [1 ,2 ]
Yu, Yue [1 ,2 ]
Chen, Zu-Yi [1 ,2 ]
Luo, Yin-Fang [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Modern Phys, Lanzhou 730000, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] GSI Helmholtzzentrum Schwerionenforsch, Planckstr 1, D-64291 Darmstadt, Germany
[4] FH Aachen Univ Appl Sci, Heinrich Mussmann Str 1, D-52428 Julich, Germany
基金
国家重点研发计划;
关键词
Lifetime measurement; Schottky mass spectrometry; Sensitivity response; Highly charged heavy ion; Resonator; UH vacuum; Nondestructive diagnostics; ELECTRON COOLING EXPERIMENTS; NUCLEAR-PHYSICS; HIRFL-CSR; CAPTURE; MASS; RESOLUTION; BEAM;
D O I
10.1007/s41365-024-01614-y
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
Schottky mass spectrometry utilizing heavy-ion storage rings is a powerful technique for the precise mass and decay half-life measurements of highly charged ions. Owing to the nondestructive ion detection features of Schottky noise detectors, the number of stored ions in the ring is determined by the peak area in the measured revolution frequency spectrum. Because of their intrinsic amplitude-frequency characteristic (AFC), Schottky detector systems exhibit varying sensitivities at different frequencies. Using low-energy electron-cooled stored ions, a new method is developed to calibrate the AFC curve of the Schottky detector system of the Experimental Cooler Storage Ring (CSRe) storage ring located in Lanzhou, China. Using the amplitude-calibrated frequency spectrum, a notable refinement was observed in the precision of both the peak position and peak area. As a result, the storage lifetimes of the electron-cooled fully ionized 56\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>{56}$$\end{document}Fe26+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>{26+}$$\end{document} ions were determined with high precision at beam energies of 13.7 and 116.4 MeV/u, despite of frequency drifts during the experiment. When electron cooling was turned off, the effective vacuum condition experienced by the 116.4 MeV/u 56\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>{56}$$\end{document}Fe26+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>{26+}$$\end{document} ions was determined using amplitude-calibrated spectra, revealing a value of 2x10-10\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\times 10<^>{-10}$$\end{document} mbar, which is consistent with vacuum gauge readings along the CSRe ring. The method reported herein will be adapted for the next-generation storage ring of the HIAF facility under construction in Huizhou, China. It can also be adapted to other storage ring facilities worldwide to improve precision and enhance lifetime measurements using many ions in the ring.
引用
收藏
页数:11
相关论文
共 64 条
[31]   ELECTRON-CAPTURE FOR FAST HIGHLY CHARGED IONS IN GAS TARGETS - AN EMPIRICAL SCALING RULE [J].
SCHLACHTER, AS ;
STEARNS, JW ;
GRAHAM, WG ;
BERKNER, KH ;
PYLE, RV ;
TANIS, JA .
PHYSICAL REVIEW A, 1983, 27 (06) :3372-3374
[32]   Anomalous temperature reduction of electron-cooled heavy ion beams in the storage ring ESR [J].
Steck, M ;
Beckert, K ;
Eickhoff, H ;
Franzke, B ;
Nolden, F ;
Reich, H ;
Schlitt, B ;
Winkler, T .
PHYSICAL REVIEW LETTERS, 1996, 77 (18) :3803-3806
[33]   Electron cooling experiments at the ESR [J].
Steck, M ;
Beller, P ;
Beckert, K ;
Franzke, B ;
Nolden, F .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2004, 532 (1-2) :357-365
[34]   ELECTRON COOLING OF HEAVY-IONS [J].
STECK, M ;
BISOFFI, G ;
BLUM, M ;
FRIEDRICH, A ;
GEYER, C ;
GRIESER, M ;
HOLZER, B ;
JAESCHKE, E ;
JUNG, M ;
KRAMER, D ;
MATL, K ;
OTT, W ;
REPNOW, R .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1990, 287 (1-2) :324-327
[35]   Heavy-ion storage rings and their use in precision experiments with highly charged ions [J].
Steck, Markus ;
Litvinov, Yuri A. .
PROGRESS IN PARTICLE AND NUCLEAR PHYSICS, 2020, 115
[36]   A resonant Schottky pick-up for Rare-RI Ring at RIKEN [J].
Suzaki, F. ;
Abe, Y. ;
Ozawa, A. ;
Suzuki, T. ;
Uesaka, T. ;
Wakasugi, M. ;
Yamada, K. ;
Yamaguchi, T. ;
Yamaguchi, Y. ;
Zenihiro, J. .
PHYSICA SCRIPTA, 2015, T166
[37]   LISE plus plus : Radioactive beam production with in-flight separators [J].
Tarasov, O. B. ;
Bazin, D. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2008, 266 (19-20) :4657-4664
[38]   Collision processes involving heavy many-electron ions interacting with neutral atoms [J].
Tolstikhina, I. Yu ;
Shevelko, V. P. .
PHYSICS-USPEKHI, 2013, 56 (03) :213-242
[39]   First application of combined isochronous and Schottky mass spectrometry: Half-lives of fully ionized 49Cr24+ and 53Fe26+ atoms [J].
Tu, X. L. ;
Chen, X. C. ;
Zhang, J. T. ;
Shuai, P. ;
Yue, K. ;
Xu, X. ;
Fu, C. Y. ;
Zeng, Q. ;
Zhou, X. ;
Xing, Y. M. ;
Wu, J. X. ;
Mao, R. S. ;
Mao, L. J. ;
Fang, K. H. ;
Sun, Z. Y. ;
Wang, M. ;
Yang, J. C. ;
Litvinov, Yu. A. ;
Blaum, K. ;
Zhang, Y. H. ;
Yuan, Y. J. ;
Ma, X. W. ;
Zhou, X. H. ;
Xu, H. S. .
PHYSICAL REVIEW C, 2018, 97 (01)
[40]   Precision isochronous mass measurements at the storage ring CSRe in Lanzhou [J].
Tu, X. L. ;
Wang, M. ;
Litvinov, Yu A. ;
Zhang, Y. H. ;
Xu, H. S. ;
Sun, Z. Y. ;
Audi, G. ;
Blaum, K. ;
Du, C. M. ;
Huang, W. X. ;
Hu, Z. G. ;
Geng, P. ;
Jin, S. L. ;
Liu, L. X. ;
Liu, Y. ;
Mei, B. ;
Mao, R. S. ;
Ma, X. W. ;
Suzuki, H. ;
Shuai, P. ;
Sun, Y. ;
Tang, S. W. ;
Wang, J. S. ;
Wang, S. T. ;
Xiao, G. Q. ;
Xu, X. ;
Xia, J. W. ;
Yang, J. C. ;
Ye, R. P. ;
Yamaguchi, T. ;
Yan, X. L. ;
Yuan, Y. J. ;
Yamaguchi, Y. ;
Zang, Y. D. ;
Zhao, H. W. ;
Zhao, T. C. ;
Zhang, X. Y. ;
Zhou, X. H. ;
Zhan, W. L. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2011, 654 (01) :213-218