A Modified Transformer Network for Seizure Detection Using EEG Signals

被引:0
|
作者
Hu, Wenrong [1 ]
Wang, Juan [1 ]
Li, Feng [1 ]
Ge, Daohui [1 ]
Wang, Yuxia [1 ]
Jia, Qingwei [1 ]
Yuan, Shasha [1 ]
机构
[1] Qufu Normal Univ, Sch Comp Sci, Rizhao 276826, Peoples R China
基金
中国国家自然科学基金;
关键词
EEG; seizure detection; discrete wavelet transform; Co-MixUp; transformer; NEURAL-NETWORK;
D O I
10.1142/S0129065725500030
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Seizures have a serious impact on the physical function and daily life of epileptic patients. The automated detection of seizures can assist clinicians in taking preventive measures for patients during the diagnosis process. The combination of deep learning (DL) model with convolutional neural network (CNN) and transformer network can effectively extract both local and global features, resulting in improved seizure detection performance. In this study, an enhanced transformer network named Inresformer is proposed for seizure detection, which is combined with Inception and Residual network extracting different scale features of electroencephalography (EEG) signals to enrich the feature representation. In addition, the improved transformer network replaces the existing Feedforward layers with two half-step Feedforward layers to enhance the nonlinear representation of the model. The proposed architecture utilizes discrete wavelet transform (DWT) to decompose the original EEG signals, and the three sub-bands are selected for signal reconstruction. Then, the Co-MixUp method is adopted to solve the problem of data imbalance, and the processed signals are sent to the Inresformer network for seizure information capture and recognition. Finally, discriminant fusion is performed on the results of three-scale EEG sub-signals to achieve final seizure recognition. The proposed network achieves the best accuracy of 100% on Bonn dataset and the average accuracy of 98.03%, sensitivity of 95.65%, and specificity of 98.57% on the long-term CHB-MIT dataset. Compared to the existing DL networks, the proposed method holds significant potential for clinical research and diagnosis applications with competitive performance.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Epileptic Seizure Detection using EEG Signals
    Khan, Irfan Mabood
    Khan, Mohd Maaz
    Farooq, Omar
    5TH INTERNATIONAL CONFERENCE ON COMPUTING AND INFORMATICS (ICCI 2022), 2022, : 111 - 117
  • [2] Epilepsy Seizure Detection Using EEG signals
    Lasefr, Zakareya
    Ayyalasomayajula, Sai Shiva V. N. R.
    Elleithy, Khaled
    2017 IEEE 8TH ANNUAL UBIQUITOUS COMPUTING, ELECTRONICS AND MOBILE COMMUNICATION CONFERENCE (UEMCON), 2017, : 162 - 167
  • [3] An automated epileptic seizure detection using optimized neural network from EEG signals
    Chanu, Maibam Mangalleibi
    Singh, Ngangbam Herojit
    Thongam, Khelchandra
    EXPERT SYSTEMS, 2023, 40 (06)
  • [4] Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals
    Acharya, U. Rajendra
    Oh, Shu Lih
    Hagiwara, Yuki
    Tan, Jen Hong
    Adeli, Hojjat
    COMPUTERS IN BIOLOGY AND MEDICINE, 2018, 100 : 270 - 278
  • [5] Epileptic Seizure Detection Using GARCH Model on EEG Signals
    Mihandoust, Sara
    Amirani, Mehdi Chehel
    2011 1ST INTERNATIONAL ECONFERENCE ON COMPUTER AND KNOWLEDGE ENGINEERING (ICCKE), 2011, : 100 - 104
  • [6] Epileptic Seizure Detection using the Singular Values of EEG Signals
    Shahid, Arslan
    Kamel, Nidal
    Malik, Aamir Saeed
    Jatoi, Munsif Ali
    2013 ICME INTERNATIONAL CONFERENCE ON COMPLEX MEDICAL ENGINEERING (CME), 2013, : 652 - 655
  • [7] Seizure Detection in EEG Signals Using Support Vector Machines
    Seng, Cher Hau
    Demirli, Ramazan
    Khuon, Lunal
    Bolger, Donovan
    2012 38TH ANNUAL NORTHEAST BIOENGINEERING CONFERENCE (NEBEC), 2012, : 231 - +
  • [8] Seizure Detection Based on EEG Signals Using Asymmetrical Back Propagation Neural Network Method
    S. Poorani
    P. Balasubramanie
    Circuits, Systems, and Signal Processing, 2021, 40 : 4614 - 4632
  • [9] EPILEPTIC SEIZURE DETECTION USING AR MODEL ON EEG SIGNALS
    Mousavi, S. R.
    Niknazar, M.
    Vahdat, B. Vosoughi
    2008 CAIRO INTERNATIONAL BIOMEDICAL ENGINEERING CONFERENCE, 2008, : 189 - +
  • [10] Seizure Detection Based on EEG Signals Using Asymmetrical Back Propagation Neural Network Method
    Poorani, S.
    Balasubramanie, P.
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2021, 40 (09) : 4614 - 4632