Spatial and functional separation of mTORC1 signalling in response to different amino acid sources

被引:15
作者
Fernandes, Stephanie A. [1 ,2 ]
Angelidaki, Danai-Dimitra [1 ]
Nuechel, Julian [1 ,3 ]
Pan, Jiyoung [1 ,2 ]
Gollwitzer, Peter [1 ]
Elkis, Yoav [1 ]
Artoni, Filippo [1 ,2 ]
Wilhelm, Sabine [1 ]
Kovacevic-Sarmiento, Marija [1 ]
Demetriades, Constantinos [1 ,2 ,4 ]
机构
[1] Max Planck Inst Biol Ageing, Cologne, Germany
[2] Cologne Grad Sch Aging Res, Cologne, Germany
[3] Univ Cologne, Med Fac, Ctr Biochem, Cologne, Germany
[4] Univ Cologne, Cluster Excellence Cellular Stress Responses Aging, Cologne, Germany
基金
欧洲研究理事会;
关键词
MAMMALIAN TARGET; RAG GTPASES; RAPAMYCIN MTOR; ENDOPLASMIC-RETICULUM; COMPLEX; PROTEIN; METABOLISM; ACTIVATION; LOCALIZATION; MECHANISM;
D O I
10.1038/s41556-024-01523-7
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Amino acid (AA) availability is a robust determinant of cell growth through controlling mechanistic/mammalian target of rapamycin complex 1 (mTORC1) activity. According to the predominant model in the field, AA sufficiency drives the recruitment and activation of mTORC1 on the lysosomal surface by the heterodimeric Rag GTPases, from where it coordinates the majority of cellular processes. Importantly, however, the teleonomy of the proposed lysosomal regulation of mTORC1 and where mTORC1 acts on its effector proteins remain enigmatic. Here, by using multiple pharmacological and genetic means to perturb the lysosomal AA-sensing and protein recycling machineries, we describe the spatial separation of mTORC1 regulation and downstream functions in mammalian cells, with lysosomal and non-lysosomal mTORC1 phosphorylating distinct substrates in response to different AA sources. Moreover, we reveal that a fraction of mTOR localizes at lysosomes owing to basal lysosomal proteolysis that locally supplies new AAs, even in cells grown in the presence of extracellular nutrients, whereas cytoplasmic mTORC1 is regulated by exogenous AAs. Overall, our study substantially expands our knowledge about the topology of mTORC1 regulation by AAs and hints at the existence of distinct, Rag- and lysosome-independent mechanisms that control its activity at other subcellular locations. Given the importance of mTORC1 signalling and AA sensing for human ageing and disease, our findings will probably pave the way towards the identification of function-specific mTORC1 regulators and thus highlight more effective targets for drug discovery against conditions with dysregulated mTORC1 activity in the future. Fernandes, Angelidaki et al. provide evidence supporting the spatial separation of mTORC1 activation and signalling. Differentially localized mTORC1 complexes phosphorylate distinct substrates in response to different amino acid supplies.
引用
收藏
页码:1918 / 1933
页数:40
相关论文
共 111 条
[81]   Genome engineering using the CRISPR-Cas9 system [J].
Ran, F. Ann ;
Hsu, Patrick D. ;
Wright, Jason ;
Agarwala, Vineeta ;
Scott, David A. ;
Zhang, Feng .
NATURE PROTOCOLS, 2013, 8 (11) :2281-2308
[82]   p70 S6K1 nuclear localization depends on its mTOR-mediated phosphorylation at T389, but not on its kinase activity towards S6 [J].
Rosner, M. ;
Schipany, K. ;
Hengstschlaeger, M. .
AMINO ACIDS, 2012, 42 (06) :2251-2256
[83]   The harmonizome: a collection of processed datasets gathered to serve and mine knowledge about genes and proteins [J].
Rouillard, Andrew D. ;
Gundersen, Gregory W. ;
Fernandez, Nicolas F. ;
Wang, Zichen ;
Monteiro, Caroline D. ;
McDermott, Michael G. ;
Ma'ayan, Avi .
DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION, 2016,
[84]   The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1 [J].
Sancak, Yasemin ;
Peterson, Timothy R. ;
Shaul, Yoav D. ;
Lindquist, Robert A. ;
Thoreen, Carson C. ;
Bar-Peled, Liron ;
Sabatini, David M. .
SCIENCE, 2008, 320 (5882) :1496-1501
[85]   PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase [J].
Sancak, Yasemin ;
Thoreen, Carson C. ;
Peterson, Timothy R. ;
Lindquist, Robert A. ;
Kang, Seong A. ;
Spooner, Eric ;
Carr, Steven A. ;
Sabatini, David M. .
MOLECULAR CELL, 2007, 25 (06) :903-915
[86]   Ragulator-Rag Complex Targets mTORC1 to the Lysosomal Surface and Is Necessary for Its Activation by Amino Acids [J].
Sancak, Yasemin ;
Bar-Peled, Liron ;
Zoncu, Roberto ;
Markhard, Andrew L. ;
Nada, Shigeyuki ;
Sabatini, David M. .
CELL, 2010, 141 (02) :290-303
[87]   A Gene Network Regulating Lysosomal Biogenesis and Function [J].
Sardiello, Marco ;
Palmieri, Michela ;
di Ronza, Alberto ;
Medina, Diego Luis ;
Valenza, Marta ;
Gennarino, Vincenzo Alessandro ;
Di Malta, Chiara ;
Donaudy, Francesca ;
Embrione, Valerio ;
Polishchuk, Roman S. ;
Banfi, Sandro ;
Parenti, Giancarlo ;
Cattaneo, Elena ;
Ballabio, Andrea .
SCIENCE, 2009, 325 (5939) :473-477
[88]   Mechanism of arginine sensing by CASTOR1 upstream of mTORC1 [J].
Saxton, Robert A. ;
Chantranupong, Lynne ;
Knockenhauer, Kevin E. ;
Schwartz, Thomas U. ;
Sabatini, David M. .
NATURE, 2016, 536 (7615) :229-+
[89]   METABOLISM Structural basis for leucine sensing by the Sestrin2-mTORC1 pathway [J].
Saxton, Robert A. ;
Knockenhauer, Kevin E. ;
Wolfson, Rachel L. ;
Chantranupong, Lynne ;
Pacold, Michael E. ;
Wang, Tim ;
Schwartz, Thomas U. ;
Sabatini, David M. .
SCIENCE, 2016, 351 (6268) :53-58
[90]   The mammalian target of rapamycin (mTOR) pathway regulates mitochondrial oxygen consumption and oxidative capacity [J].
Schieke, Stefan M. ;
Phillips, Darci ;
McCoy, J. Philip, Jr. ;
Aponte, Angel M. ;
Shen, Rong-Fong ;
Balaban, Robert S. ;
Finkel, Toren .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2006, 281 (37) :27643-27652