Prime numbers of the form [nctanθ(logn)]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[\text {n}^c \tan ^\theta (\log \text {n})]$$\end{document}

被引:0
作者
Stoyan Dimitrov [1 ]
机构
[1] Technical University of Sofia,Faculty of Applied Mathematics and Informatics
[2] Institute of Biophysics and Biomedical Engineering,Department of Bioinformatics and Mathematical Modelling
[3] Bulgarian Academy of Sciences,undefined
关键词
Primes; Exponential sums; Lower bound;
D O I
10.1007/s13226-023-00420-3
中图分类号
学科分类号
摘要
Let [·]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[\, \cdot \,]$$\end{document} be the floor function. In the present paper we prove that when 1<c<1211\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1<c<\frac{12}{11}$$\end{document} and θ>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta >1$$\end{document} is a fixed, then there exist infinitely many prime numbers of the form [nctanθ(logn)]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[n^c \tan ^\theta (\log n)]$$\end{document}.
引用
收藏
页码:1198 / 1209
页数:11
相关论文
共 7 条
[1]  
Heath-Brown DR(1982)Prime numbers in short intervals and a generalized Vaughan identity Canad. J. Math. 34 1365-1377
[2]  
Heath-Brown DR(1983)The Piatetski-Shapiro prime number theorem J. Number Theory 16 242-266
[3]  
Jia C-H(1993)On Piatetski-Shapiro prime number theorem II Science in China Ser. A 36 913-926
[4]  
Leitmann D(1980)Abschatzung trigonometrischer summen J. Reine Angew. Math. 317 209-219
[5]  
Liu HQ(1992)On the Piatetski-Shapiro prime number theorem Bull. London Math. Soc. 24 143-147
[6]  
Rivat J(1985)Some extremal problems in Fourier analysis Bull. Amer. Math. Soc. 12 183-216
[7]  
Vaaler JD(undefined)undefined undefined undefined undefined-undefined