Global Small Analytic Solution of 3-D Anisotropic Navier-Stokes System

被引:0
作者
Liu, Ning [1 ]
Zhang, Ping [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Hua Loo Keng Key Lab Math, Beijing 100190, Peoples R China
[3] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
MILD SOLUTIONS; EQUATIONS; REGULARITY;
D O I
10.1007/s00205-024-02051-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove the global existence of analytic solution for 3D anisotropic Navier-Stokes system with initial data which is small and analytic in the vertical variable. We shall also prove that this solution will be analytic in the horizontal variables soon after t > 0. Furthermore, we show that the ratio between the analytic radius, R-h(t), of the solution in the horizontal variables and root t satisfies lim(t -> 0+)( R)h((t))/( root t) = infinity.
引用
收藏
页数:43
相关论文
共 28 条
[1]   Analyticity and Decay Estimates of the Navier-Stokes Equations in Critical Besov Spaces [J].
Bae, Hantaek ;
Biswas, Animikh ;
Tadmor, Eitan .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2012, 205 (03) :963-991
[2]  
Bahouri H, 2011, GRUNDLEHR MATH WISS, V343, P1, DOI 10.1007/978-3-642-16830-7_1
[3]  
BONY JM, 1981, ANN SCI ECOLE NORM S, V14, P209
[4]   ANALYTICITY UP TO THE BOUNDARY FOR THE STOKES AND THE NAVIER-STOKES SYSTEMS [J].
Camliyurt, Guher ;
Kukavica, Igor ;
Vicol, Vlad .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 373 (05) :3375-3422
[5]  
Chemin J.-Y., 2006, Oxford Lecture Series in Mathematics and its Applications, V32
[6]  
Chemin J-Y., 2004, Le systme de Navier-Stokes Incompressible Soixante dix ans Aprs Jean Leray, Actes des Journes Mathmatiques la Mmoire de Jean Leray, 99123, Sminaire et Congrs, 9
[7]   On the global wellposedness to the 3-D incompressible anisotropic Navier- Stokes equations [J].
Chemin, Jean-Yves ;
Zhang, Ping .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 272 (02) :529-566
[8]  
Chemin JY, 2020, MATH RES LETT, V27, P1631
[9]   Global large solutions to 3-D inhomogeneous Navier-Stokes system with one slow variable [J].
Chemin, Jean-Yves ;
Paicu, Marius ;
Zhang, Ping .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 256 (01) :223-252
[10]   SELF-IMPROVING BOUNDS FOR THE NAVIER-STOKES EQUATIONS [J].
Chemin, Jean-Yves ;
Planchon, Fabrice .
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2012, 140 (04) :583-597