Toeplitz operators associated with the directional short-time Fourier transform and applications

被引:0
|
作者
Ghobber, Saifallah [1 ]
Mejjaoli, Hatem [2 ]
Omri, Slim [3 ]
机构
[1] King Faisal Univ, Coll Sci, Dept Math & Stat, POB 400, Al Hasa 31982, Saudi Arabia
[2] Taibah Univ, Coll Sci, Dept Math, POB 30002, Al Madinah Al Munawwarah, Saudi Arabia
[3] Univ Tunis El Manar, Fac Sci tunis, Dept Math, Tunis 2092, Tunisia
关键词
Directional short-time Fourier transform; Toeplitz operators; Spectrogram; DUNKL-GABOR TRANSFORM; UNCERTAINTY PRINCIPLES; LOCALIZATION OPERATORS; FREQUENCY ANALYSIS; MULTIPLIERS; FRAMES; SPACE;
D O I
10.1007/s13370-025-01271-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present article, we prove a Shapiro uncertainty principle for the directional short-time Fourier transform. Next, we introduce the notion of Toeplitz operators associated with the directional short-time Fourier transform. Particularly, we study the trace class properties of such operators and prove that they belong to the Schatten-von Neumann class. Next, we investigate the boundedness and compactness of these Toeplitz operators in the Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>{p}$$\end{document}-spaces. Finally, we introduce and study the generalized spectrogram associated with these Toeplitz operators.
引用
收藏
页数:34
相关论文
共 50 条
  • [41] Octonion Short-Time Fourier Transform for Time-Frequency Representation and Its Applications
    Gao, Wen-Biao
    Li, Bing-Zhao
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2021, 69 : 6386 - 6398
  • [42] Two twinning operators when imposing nonlinear modulation in short-time Fourier transform
    Su, Yue
    Ye, Feng
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025, 48 (04) : 4676 - 4686
  • [44] Toeplitz Operators Associated with the Hypergeometric Gabor Transform and Applications
    Mejjaoli, Hatem
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2024, 18 (05)
  • [45] Toeplitz operators associated with the Whittaker Gabor transform and applications
    Mejjaoli, Hatem
    JOURNAL OF APPLIED ANALYSIS, 2024,
  • [46] Planar Sampling Sets for the Short-Time Fourier Transform
    Jaming, Philippe
    Speckbacher, Michael
    CONSTRUCTIVE APPROXIMATION, 2021, 53 (03) : 479 - 502
  • [47] Short-time quadratic-phase Fourier transform
    Shah, Firdous A.
    Lone, Waseem Z.
    Tantary, Azhar Y.
    OPTIK, 2021, 245
  • [48] Optimal short-time Fourier transform for monocomponent signals
    Güven, HE
    PROCEEDINGS OF THE IEEE 12TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, 2004, : 312 - 315
  • [49] Learning to short-time Fourier transform in spectrum sensing
    Zhou, Longmei
    Sun, Zhuo
    Wang, Wenbo
    PHYSICAL COMMUNICATION, 2017, 25 : 420 - 425
  • [50] Short-time Fourier transform laser Doppler holography
    Samson, B.
    Atlan, M.
    JOURNAL OF THE EUROPEAN OPTICAL SOCIETY-RAPID PUBLICATIONS, 2013, 8