Toeplitz operators associated with the directional short-time Fourier transform and applications

被引:0
|
作者
Ghobber, Saifallah [1 ]
Mejjaoli, Hatem [2 ]
Omri, Slim [3 ]
机构
[1] King Faisal Univ, Coll Sci, Dept Math & Stat, POB 400, Al Hasa 31982, Saudi Arabia
[2] Taibah Univ, Coll Sci, Dept Math, POB 30002, Al Madinah Al Munawwarah, Saudi Arabia
[3] Univ Tunis El Manar, Fac Sci tunis, Dept Math, Tunis 2092, Tunisia
关键词
Directional short-time Fourier transform; Toeplitz operators; Spectrogram; DUNKL-GABOR TRANSFORM; UNCERTAINTY PRINCIPLES; LOCALIZATION OPERATORS; FREQUENCY ANALYSIS; MULTIPLIERS; FRAMES; SPACE;
D O I
10.1007/s13370-025-01271-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present article, we prove a Shapiro uncertainty principle for the directional short-time Fourier transform. Next, we introduce the notion of Toeplitz operators associated with the directional short-time Fourier transform. Particularly, we study the trace class properties of such operators and prove that they belong to the Schatten-von Neumann class. Next, we investigate the boundedness and compactness of these Toeplitz operators in the Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>{p}$$\end{document}-spaces. Finally, we introduce and study the generalized spectrogram associated with these Toeplitz operators.
引用
收藏
页数:34
相关论文
共 50 条
  • [31] MODIFIED SHORT-TIME FOURIER-TRANSFORM
    WANG, MS
    BAO, Z
    OPTICAL ENGINEERING, 1995, 34 (05) : 1333 - 1337
  • [32] Time-stretched short-time Fourier transform
    Nuruzzaman, A
    Boyraz, O
    Jalali, B
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2006, 55 (02) : 598 - 602
  • [33] Multidimensional short-time fractional Fourier transform
    Sandikci, Ayse
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2025,
  • [34] Sampling Trajectories for the Short-Time Fourier Transform
    Michael Speckbacher
    Journal of Fourier Analysis and Applications, 2022, 28
  • [35] Inversion formulas for the short-time Fourier transform
    Feichtinger, Hans G.
    Weisz, Ferenc
    JOURNAL OF GEOMETRIC ANALYSIS, 2006, 16 (03) : 507 - 521
  • [36] Staggered parallel short-time Fourier transform
    Labao, Alfonso B.
    Camaclang, Rodolfo C., III
    Caro, Jaime D. L.
    DIGITAL SIGNAL PROCESSING, 2019, 93 : 70 - 86
  • [37] Sliding Short-Time Fractional Fourier Transform
    Huang, Gaowa
    Zhang, Feng
    Tao, Ran
    IEEE SIGNAL PROCESSING LETTERS, 2022, 29 : 1823 - 1827
  • [38] Inversion formulas for the short-time Fourier transform
    Hans G. Feichtinger
    Ferenc Weisz
    The Journal of Geometric Analysis, 2006, 16 : 507 - 521
  • [39] Multiplier theorems for the short-time Fourier transform
    Weisz, Ferenc
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2008, 60 (01) : 133 - 149