Toeplitz operators associated with the directional short-time Fourier transform and applications

被引:0
|
作者
Ghobber, Saifallah [1 ]
Mejjaoli, Hatem [2 ]
Omri, Slim [3 ]
机构
[1] King Faisal Univ, Coll Sci, Dept Math & Stat, POB 400, Al Hasa 31982, Saudi Arabia
[2] Taibah Univ, Coll Sci, Dept Math, POB 30002, Al Madinah Al Munawwarah, Saudi Arabia
[3] Univ Tunis El Manar, Fac Sci tunis, Dept Math, Tunis 2092, Tunisia
关键词
Directional short-time Fourier transform; Toeplitz operators; Spectrogram; DUNKL-GABOR TRANSFORM; UNCERTAINTY PRINCIPLES; LOCALIZATION OPERATORS; FREQUENCY ANALYSIS; MULTIPLIERS; FRAMES; SPACE;
D O I
10.1007/s13370-025-01271-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present article, we prove a Shapiro uncertainty principle for the directional short-time Fourier transform. Next, we introduce the notion of Toeplitz operators associated with the directional short-time Fourier transform. Particularly, we study the trace class properties of such operators and prove that they belong to the Schatten-von Neumann class. Next, we investigate the boundedness and compactness of these Toeplitz operators in the Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>{p}$$\end{document}-spaces. Finally, we introduce and study the generalized spectrogram associated with these Toeplitz operators.
引用
收藏
页数:34
相关论文
共 50 条
  • [21] The Feedforward Short-Time Fourier Transform
    Garrido, Mario
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2016, 63 (09) : 868 - 872
  • [22] Short-time Fourier transform and superoscillations
    Alpay, Daniel
    De Martino, Antonino
    Diki, Kamal
    Struppa, Daniele C.
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2024, 73
  • [23] A SHORT-TIME FOURIER-TRANSFORM
    OWENS, FJ
    MURPHY, MS
    SIGNAL PROCESSING, 1988, 14 (01) : 3 - 10
  • [24] Characterization of Wave Fronts of Ultradistributions Using Directional Short-Time Fourier Transform
    Atanasova, Sanja
    Maksimovic, Snjezana
    Pilipovic, Stevan
    AXIOMS, 2021, 10 (04)
  • [25] Toeplitz Operators Associated with the Deformed Windowed Fourier Transform
    Hatem Mejjaoli
    Firdous A. Shah
    Nadia Sraieb
    Complex Analysis and Operator Theory, 2022, 16
  • [26] Toeplitz Operators Associated with the Deformed Windowed Fourier Transform
    Mejjaoli, Hatem
    Shah, Firdous A.
    Sraieb, Nadia
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2022, 16 (03)
  • [27] Novel Short-Time Fractional Fourier Transform: Theory, Implementation, and Applications
    Shi, Jun
    Zheng, Jiabin
    Liu, Xiaoping
    Xiang, Wei
    Zhang, Qinyu
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2020, 68 : 3280 - 3295
  • [28] A study of inverse short-time Fourier transform
    Yang, Bin
    2008 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-12, 2008, : 3541 - 3544
  • [29] Multiplier Theorems for the Short-Time Fourier Transform
    Ferenc Weisz
    Integral Equations and Operator Theory, 2008, 60 : 133 - 149
  • [30] Sampling Trajectories for the Short-Time Fourier Transform
    Speckbacher, Michael
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2022, 28 (06)