Toeplitz operators associated with the directional short-time Fourier transform and applications

被引:0
作者
Ghobber, Saifallah [1 ]
Mejjaoli, Hatem [2 ]
Omri, Slim [3 ]
机构
[1] King Faisal Univ, Coll Sci, Dept Math & Stat, POB 400, Al Hasa 31982, Saudi Arabia
[2] Taibah Univ, Coll Sci, Dept Math, POB 30002, Al Madinah Al Munawwarah, Saudi Arabia
[3] Univ Tunis El Manar, Fac Sci tunis, Dept Math, Tunis 2092, Tunisia
关键词
Directional short-time Fourier transform; Toeplitz operators; Spectrogram; DUNKL-GABOR TRANSFORM; UNCERTAINTY PRINCIPLES; LOCALIZATION OPERATORS; FREQUENCY ANALYSIS; MULTIPLIERS; FRAMES; SPACE;
D O I
10.1007/s13370-025-01271-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present article, we prove a Shapiro uncertainty principle for the directional short-time Fourier transform. Next, we introduce the notion of Toeplitz operators associated with the directional short-time Fourier transform. Particularly, we study the trace class properties of such operators and prove that they belong to the Schatten-von Neumann class. Next, we investigate the boundedness and compactness of these Toeplitz operators in the Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>{p}$$\end{document}-spaces. Finally, we introduce and study the generalized spectrogram associated with these Toeplitz operators.
引用
收藏
页数:34
相关论文
共 55 条