Toeplitz operators associated with the directional short-time Fourier transform and applications

被引:0
作者
Ghobber, Saifallah [1 ]
Mejjaoli, Hatem [2 ]
Omri, Slim [3 ]
机构
[1] King Faisal Univ, Coll Sci, Dept Math & Stat, POB 400, Al Hasa 31982, Saudi Arabia
[2] Taibah Univ, Coll Sci, Dept Math, POB 30002, Al Madinah Al Munawwarah, Saudi Arabia
[3] Univ Tunis El Manar, Fac Sci tunis, Dept Math, Tunis 2092, Tunisia
关键词
Directional short-time Fourier transform; Toeplitz operators; Spectrogram; DUNKL-GABOR TRANSFORM; UNCERTAINTY PRINCIPLES; LOCALIZATION OPERATORS; FREQUENCY ANALYSIS; MULTIPLIERS; FRAMES; SPACE;
D O I
10.1007/s13370-025-01271-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present article, we prove a Shapiro uncertainty principle for the directional short-time Fourier transform. Next, we introduce the notion of Toeplitz operators associated with the directional short-time Fourier transform. Particularly, we study the trace class properties of such operators and prove that they belong to the Schatten-von Neumann class. Next, we investigate the boundedness and compactness of these Toeplitz operators in the Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>{p}$$\end{document}-spaces. Finally, we introduce and study the generalized spectrogram associated with these Toeplitz operators.
引用
收藏
页数:34
相关论文
共 55 条
  • [1] ON ACCUMULATED SPECTROGRAMS
    Abreu, Luis Daniel
    Groechenig, Karlheinz
    Romero, Jose Luis
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 368 (05) : 3629 - 3649
  • [2] Measures of localization and quantitative Nyquist densities
    Abreu, Luis Daniel
    Pereira, Joao M.
    [J]. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2015, 38 (03) : 524 - 534
  • [3] Directional Time-Frequency Analysis and Directional Regularity
    Atanasova, Sanja
    Pilipovic, Stevan
    Saneva, Katerina
    [J]. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2019, 42 (05) : 2075 - 2090
  • [4] Hilbert-Schmidt operators and frames - Classification, best approximation by multipliers and algorithms
    Balazs, Peter
    [J]. INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2008, 6 (02) : 315 - 330
  • [5] Bennett C., 1988, INTERPOLATION OPERAT
  • [6] Boggess A., 2001, A First Course in Wavelets with Fourier Analysis
  • [7] Boggiatto P, 2004, INTEGR EQUAT OPER TH, V49, P1, DOI 10.1007/s00020-002-1200-1
  • [8] Bracewell R., 2000, The Fourier Transform and Its Applications
  • [9] Bremaud P., 2002, Mathematical Principles of Signal Processing, DOI [10.1007/978-1-4757-3669-4, DOI 10.1007/978-1-4757-3669-4]
  • [10] Calderon A.P., 1964, Studia Mathematica, V24, P113, DOI [10.4064/sm-24-2-113-190, DOI 10.4064/SM-24-2-113-190]