共 23 条
- [1] Nyamekye C., Ofosu S.A., Arthur R., Osei G., Appiah L.B., Kwofie S., Ghansah B., Bryniok D., Evaluating the spatial and temporal variations of aquatic weeds (Biomass) on Lower Volta River using multi-sensor Landsat images and machine learning, Heliyon, 7, 5, (2021)
- [2] Li G., Hu R., Wang N., Yang T., Xu F., Li J., Wu J., Huang Z., Pan M., Lyu T., Cultivation of microalgae in adjusted wastewater to enhance biofuel production and reduce environmental impact: pyrolysis performances and life cycle assessment, J Clean Prod, 355, (2022)
- [3] Almarashi J.Q.M., El-Zohary S.E., Ellabban M.A., Abomohra A.E.-F., Enhancement olipid production and energy recovery from the green microalga Chlorella vulgaris by inoculum pretreatment with low-dose cold atmospheric pressure plasma (CAPP), Energy Convers Manag, 204, (2020)
- [4] Thamaga K.H., Dube T., Remote sensing of invasive water hyacinth (Eichhornia crassipes): a review on applications and challenges, Remote Sens Appl Soc Environ, 10, pp. 36-46, (2018)
- [5] Pabi O., Akpabey F.J., High spatial resolution mapping and management options of aquatic weeds at the lower volta, Dams Development Downstream Communities, (2017)
- [6] Pereira L.A., Nakamura R.Y., De Souza G.F., Martins D., Papa J.P., Aquatic weed automatic classification using machine learning techniques, Comput Electron Agric, 87, pp. 56-63, (2012)
- [7] Mukarugwiro J.A., Newete S.W., Adam E., Nsanganwimana F., Abutaleb K., Byrne M.J., Mapping spatio-temporal variations in water hyacinth (Eichhornia crassipes) coverage on Rwandan water bodies using multispectral imageries, Int J Environ Sci Technol, 18, 2, pp. 275-286, (2021)
- [8] Al-Azzam N., Shatnawi I., Comparing supervised and semi-supervised machine learning models on diagnosing breast cancer, Ann Med Surg, 62, pp. 53-64, (2021)
- [9] Chen F., Wang L., Gu Q., Wang M., Ding X., Nexus between natural resources, financial development, green innovation and environmental sustainability in China: Fresh insight from novel quantile ARDL, Resour Policy, 79, (2022)
- [10] Ligthart A., Catal C., Tekinerdogan B., Analyzing the effectiveness of semi-supervised learning approaches for opinion spam classification, Appl Soft Comput, 101, (2021)