Transcriptomic and metabolomic analyses of Tartary buckwheat roots during cadmium stress

被引:0
|
作者
Du, Hanmei [1 ]
Tan, Lu [1 ]
Wei, Changhe [1 ]
Li, Shengchun [1 ]
Xu, Zhou [1 ]
Wang, Qinghai [1 ]
Yu, Qiuzhu [1 ]
Ryan, Peter R. [2 ]
Li, Hongyou [3 ]
Wang, An'hu [1 ]
机构
[1] Xichang Univ, Panxi Featured Crops Res & Utilizat Key Lab Sichua, 1 Xuefu Rd, Anning 615000, Xichang, Peoples R China
[2] Australian Natl Univ, Res Sch Biol, Div Plant Sci, Canberra, ACT 2601, Australia
[3] Guizhou Normal Univ, Res Ctr Buckwheat Ind Technol, Guiyang 550001, Peoples R China
来源
SCIENTIFIC REPORTS | 2025年 / 15卷 / 01期
基金
中国国家自然科学基金;
关键词
Cadmium; Tartary buckwheat; Transcriptome; Metabolome; Cell wall; Glutathione; ALUMINUM SENSITIVITY; GLUTATHIONE; GROWTH; TRANSPORTER; MECHANISM; GENE; PHYTOCHELATINS; ACCUMULATION; TOLERANCE; MAIZE;
D O I
10.1038/s41598-025-89462-7
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Cadmium (Cd) can adversely damage plant growth. Therefore, understanding the control molecular mechanisms of Cd accumulation will benefit the development of strategies to reduce Cd accumulation in plants. This study performed transcriptomic and metabolomic analyses on the roots of a Cd-tolerant Tartary buckwheat cultivar following 0 h (CK), 6 h (T1), and 48 h (T2) of Cd treatment. The fresh weight and root length were not significantly inhibited under the T1 treatment but they were in the T2 treatment. The root's ultrastructure was seriously damaged in T2 but not in T1 treatment. This was evidenced by deformed cell walls, altered shape and number of organelles. A total of 449, 999 differentially expressed genes (DEGs) and eight, 37 differentially expressed metabolites (DEMs) were identified in the CK versus T1 and CK versus T2 comparison, respectively. DEGs analysis found that the expression of genes related to cell wall function, glutathione (GSH) metabolism, and phenylpropanoid biosynthesis changed significantly during Cd stress. Several WRKY, MYB, ERF, and bHLH transcription factors and transporters also responded to Cd treatment. Our results indicate that Cd stress affects cell wall function and GSH metabolism and that changes in these pathways might contribute to mechanisms of Cd tolerance in Tartary buckwheat.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Integrated Physiological, Transcriptomic and Metabolomic Analyses of the Response of Rice to Aniline Toxicity
    Wang, Jingjing
    Wang, Ruixin
    Liu, Lei
    Zhang, Wenrui
    Yin, Zhonghuan
    Guo, Rui
    Wang, Dan
    Guo, Changhong
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2025, 26 (02)
  • [42] Combining transcriptome and metabolome analyses to reveal the response of maize roots to Pb stress
    Zhang, Xiaoxiang
    Zhao, Bin
    Ma, Xingye
    Jin, Xining
    Chen, Shilin
    Wang, Pingxi
    Guan, Zhongrong
    Wu, Xiangyuan
    Zhang, Huaisheng
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2024, 217
  • [43] Physiological and FtCHS Gene Expression Responses to PEG-Simulated Drought and Cadmium Stresses in Tartary Buckwheat Seedlings
    Li, Ling
    Yan, Xuyu
    Li, Juan
    Tian, Yashan
    JOURNAL OF PLANT GROWTH REGULATION, 2022, 41 (08) : 3518 - 3529
  • [44] Transcriptomic and Metabolomic Reprogramming from Roots to Haustoria in the Parasitic Plant, Thesium chinense
    Ichihashi, Yasunori
    Kusano, Miyako
    Kobayashi, Makoto
    Suetsugu, Kenji
    Yoshida, Satoko
    Wakatake, Takanori
    Kumaishi, Kie
    Shibata, Arisa
    Saito, Kazuki
    Shirasu, Ken
    PLANT AND CELL PHYSIOLOGY, 2018, 59 (04) : 729 - 738
  • [45] Physiological and transcriptomic analysis of purple flowering stalks (Brassica campestris var. purpurea) under cadmium stress and exogenous glutathione application
    Huang, Zhi
    Song, Xiaoli
    Song, Junyan
    Su, Liping
    Meng, Shiling
    Yu, Xuena
    Liang, Kehao
    Huang, Huanhuan
    Zhang, Fen
    Li, Huanxiu
    Tang, Yi
    Sun, Bo
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2025, 219
  • [46] Transcriptomic and Metabolomic Analyses Provide Insights into the Upregulation of Fatty Acid and Phospholipid Metabolism in Tomato Fruit under Drought Stress
    Asakura, Hiroko
    Yamakawa, Takashi
    Tamura, Tomoko
    Ueda, Reiko
    Taira, Shu
    Saito, Yoshikazu
    Abe, Keiko
    Asakura, Tomiko
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2021, 69 (09) : 2894 - 2905
  • [47] Transcriptome analysis revealed gene regulatory network involved in PEG-induced drought stress in Tartary buckwheat (Fagopyrum Tararicum)
    Huang, Juan
    Chen, Qijiao
    Rong, Yuping
    Tang, Bin
    Zhu, Liwei
    Ren, Rongrong
    Shi, Taoxiong
    Chen, Qingfu
    PEERJ, 2021, 9
  • [48] Combined transcriptomic and metabolomic analysis of alginate oligosaccharides alleviating salt stress in rice seedlings
    Du, You-Wei
    Liu, Ling
    Feng, Nai-Jie
    Zheng, Dian-Feng
    Liu, Mei-Ling
    Zhou, Hang
    Deng, Peng
    Wang, Ya-xing
    Zhao, Hui-Min
    BMC PLANT BIOLOGY, 2023, 23 (01)
  • [49] Metabolite Profiling and Transcriptome Analyses Provide Insights into the Flavonoid Biosynthesis in the Developing Seed of Tartary Buckwheat (Fagopyrum tataricum)
    Li, Hongyou
    Lv, Qiuyu
    Ma, Chao
    Qu, Jingtao
    Cai, Fang
    Deng, Jiao
    Huang, Juan
    Ran, Pan
    Shi, Taoxiong
    Chen, Qingfu
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2019, 67 (40) : 11262 - 11276
  • [50] Comparative transcriptomic and metabolomic analyses provide insights into the responses to NaCl and Cd stress in Tamarix hispida
    Xie, Qingjun
    Liu, Baichao
    Dong, Wenfang
    Li, Jinghang
    Wang, Danni
    Liu, Zhongyuan
    Gao, Caiqiu
    SCIENCE OF THE TOTAL ENVIRONMENT, 2023, 884