Transcriptomic and metabolomic analyses of Tartary buckwheat roots during cadmium stress

被引:0
|
作者
Du, Hanmei [1 ]
Tan, Lu [1 ]
Wei, Changhe [1 ]
Li, Shengchun [1 ]
Xu, Zhou [1 ]
Wang, Qinghai [1 ]
Yu, Qiuzhu [1 ]
Ryan, Peter R. [2 ]
Li, Hongyou [3 ]
Wang, An'hu [1 ]
机构
[1] Xichang Univ, Panxi Featured Crops Res & Utilizat Key Lab Sichua, 1 Xuefu Rd, Anning 615000, Xichang, Peoples R China
[2] Australian Natl Univ, Res Sch Biol, Div Plant Sci, Canberra, ACT 2601, Australia
[3] Guizhou Normal Univ, Res Ctr Buckwheat Ind Technol, Guiyang 550001, Peoples R China
来源
SCIENTIFIC REPORTS | 2025年 / 15卷 / 01期
基金
中国国家自然科学基金;
关键词
Cadmium; Tartary buckwheat; Transcriptome; Metabolome; Cell wall; Glutathione; ALUMINUM SENSITIVITY; GLUTATHIONE; GROWTH; TRANSPORTER; MECHANISM; GENE; PHYTOCHELATINS; ACCUMULATION; TOLERANCE; MAIZE;
D O I
10.1038/s41598-025-89462-7
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Cadmium (Cd) can adversely damage plant growth. Therefore, understanding the control molecular mechanisms of Cd accumulation will benefit the development of strategies to reduce Cd accumulation in plants. This study performed transcriptomic and metabolomic analyses on the roots of a Cd-tolerant Tartary buckwheat cultivar following 0 h (CK), 6 h (T1), and 48 h (T2) of Cd treatment. The fresh weight and root length were not significantly inhibited under the T1 treatment but they were in the T2 treatment. The root's ultrastructure was seriously damaged in T2 but not in T1 treatment. This was evidenced by deformed cell walls, altered shape and number of organelles. A total of 449, 999 differentially expressed genes (DEGs) and eight, 37 differentially expressed metabolites (DEMs) were identified in the CK versus T1 and CK versus T2 comparison, respectively. DEGs analysis found that the expression of genes related to cell wall function, glutathione (GSH) metabolism, and phenylpropanoid biosynthesis changed significantly during Cd stress. Several WRKY, MYB, ERF, and bHLH transcription factors and transporters also responded to Cd treatment. Our results indicate that Cd stress affects cell wall function and GSH metabolism and that changes in these pathways might contribute to mechanisms of Cd tolerance in Tartary buckwheat.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Transcriptomic and Metabolomic Analyses Reveal the Response Mechanism of Ophiopogon japonicus to Waterlogging Stress
    Cheng, Tingting
    Zhou, Xia
    Lin, Juan
    Zhou, Xianjian
    Wang, Hongsu
    Chen, Tiezhu
    BIOLOGY-BASEL, 2024, 13 (03):
  • [32] Toxicological mechanism of cadmium in the clam Ruditapes philippinarum using combined ionomic, metabolomic and transcriptomic analyses
    Zhang, Xiaoyu
    Li, Fei
    Ji, Chenglong
    Wu, Huifeng
    ENVIRONMENTAL POLLUTION, 2023, 323
  • [33] Physiological and transcriptomic analyses of mulberry (Morus atropurpurea) response to cadmium stress
    Dai, Fanwei
    Luo, Guoqing
    Li, Zhiyi
    Wei, Xu
    Wang, Zhenjiang
    Lin, Sen
    Tang, Cuiming
    ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY, 2020, 205
  • [34] Transcriptomic and metabolomic shifts in rice roots in response to Cr (VI) stress
    Dubey, Sonali
    Misra, Prashant
    Dwivedi, Sanjay
    Chatterjee, Sandipan
    Bag, Sumit K.
    Mantri, Shrikant
    Asif, Mehar H.
    Rai, Arti
    Kumar, Smita
    Shri, Manju
    Tripathi, Preeti
    Tripathi, Rudra D.
    Trivedi, Prabodh K.
    Chakrabarty, Debasis
    Tuli, Rakesh
    BMC GENOMICS, 2010, 11
  • [35] Quantitative transcriptomic and metabolomic analyses reveal the changes in Tricholoma matsutake fruiting bodies during cold storage
    Wen, Xuefei
    Geng, Fang
    Xu, Yisha
    Li, Xiang
    Liu, Dayu
    Liu, Zhendong
    Luo, Zhang
    Wang, Jinqiu
    FOOD CHEMISTRY, 2022, 381
  • [36] Physiological, transcriptomic, and metabolomic analyses of the chilling stress response in two melon (Cucumis melo L.) genotypes
    Diao, Qiannan
    Tian, Shoubo
    Cao, Yanyan
    Yao, Dongwei
    Fan, Hongwei
    Jiang, Xuejun
    Zhang, Wenxian
    Zhang, Yongping
    BMC PLANT BIOLOGY, 2024, 24 (01):
  • [37] Integration of transcriptome and metabolome analyses reveals sorghum roots responding to cadmium stress through regulation of the flavonoid biosynthesis pathway
    Jiao, Zhiyin
    Shi, Yannan
    Wang, Jinping
    Wang, Zhifang
    Zhang, Xing
    Jia, Xinyue
    Du, Qi
    Niu, Jingtian
    Liu, Bocheng
    Du, Ruiheng
    Ji, Guisu
    Cao, Junfeng
    Lv, Peng
    FRONTIERS IN PLANT SCIENCE, 2023, 14
  • [38] Combined Proteomic and Metabolomic Analyses Reveal the Comprehensive Regulation of Stropharia rugosoannulata Mycelia Exposed to Cadmium Stress
    Dong, Qin
    Chen, Mingjie
    Yu, Changxia
    Zhang, Yaru
    Zha, Lei
    Kakumyan, Pattana
    Yang, Huanling
    Zhao, Yan
    JOURNAL OF FUNGI, 2024, 10 (02)
  • [39] Accumulation of Phenylpropanoids in Tartary Buckwheat (Fagopyrum tataricum) under Salt Stress
    Kim, Nam Su
    Kwon, Soon-Jae
    Cuong, Do Manh
    Jeon, Jin
    Park, Jong Seok
    Park, Sang Un
    AGRONOMY-BASEL, 2019, 9 (11):
  • [40] Transcriptomic and Metabolomic Analyses of the Effects of Exogenous Trehalose on Heat Tolerance in Wheat
    Luo, Yin
    Wang, Yue
    Xie, Yanyang
    Gao, Yamin
    Li, Weiqiang
    Lang, Shuping
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (09)