MSPatch: A multi-scale patch mixing framework for multivariate time series forecasting

被引:0
|
作者
Cao, Yizhi [1 ]
Tian, Zijian [1 ]
Guo, Wenjie [1 ]
Liu, Xinggao [1 ]
机构
[1] Zhejiang Univ, Hangzhou 310027, Zhejiang, Peoples R China
关键词
Multivariate time series forecasting; Multi-scale patch embedding; Patch linear attention; Hybrid patch convolution;
D O I
10.1016/j.eswa.2025.126849
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multivariate time series forecasting is a popular yet challenging topic in fields such as traffic management and weather forecasting, where data often exhibit complex temporal variations. There remains a significant research gap in accurately understanding the correlations between multiple variables in a sequence at different times. Patch pre-processing has shown promise recently, but fixed patch lengths limit its potential. To address this problem, we propose MSPatch (Multi-Scale Patch Mixing for Time Series Forecasting), which decomposes a series into multi-scale patches to capture short-term and long-term patterns. Our main innovations include the Multi-scale Patch Embedding (MSPE) module, Patch Linear Attention (PLA) module, and Hybrid Patch Convolution (HPC) module. This multi-scale patch design allows MSPatch to decompose sequences into different scales and blend seasonal and trend components from fine to coarse scales, thereby flexibly capturing various temporal features. Extensive experiments demonstrate that our model achieves state-of-the-art performance in long-term forecasting tasks, with improvements of 14.5% and 10.0% in prediction accuracy on MSE and MAE, respectively, compared to the benchmark PatchTST. These results highlight MSPatch's ability to flexibly model diverse temporal features, significantly enhancing forecasting accuracy and robustness. By addressing key limitations of existing methods, MSPatch provides a scalable and impactful solution for real-world multivariate time series forecasting challenges.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Dynamic graph structure learning for multivariate time series forecasting
    Li, Zhuo Lin
    Zhang, Gao Wei
    Yu, Jie
    Xu, Ling Yu
    PATTERN RECOGNITION, 2023, 138
  • [22] Clustering-property Matters: A Cluster-aware Network for Large Scale Multivariate Time Series Forecasting
    Wang, Yuan
    Shao, Zezhi
    Sun, Tao
    Yu, Chengqing
    Xu, Yongjun
    Wang, Fei
    PROCEEDINGS OF THE 32ND ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2023, 2023, : 4340 - 4344
  • [23] A Multivariate Temporal Convolutional Attention Network for Time-Series Forecasting
    Wan, Renzhuo
    Tian, Chengde
    Zhang, Wei
    Deng, Wendi
    Yang, Fan
    ELECTRONICS, 2022, 11 (10)
  • [24] Memory Augmented Graph Learning Networks for Multivariate Time Series Forecasting
    Liu, Xiangyue
    Lyu, Xinqi
    Zhang, Xiangchi
    Gao, Jianliang
    Chen, Jiamin
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 4254 - 4258
  • [25] Automatic generation of fuzzy inference systems for multivariate time series forecasting
    Carvalho, Thiago
    Vellasco, Marley
    Amaral, Jose Franco
    FUZZY SETS AND SYSTEMS, 2023, 470
  • [26] Pattern-oriented Attention Mechanism for Multivariate Time Series Forecasting
    Hu, Hanwen
    Han, Zhangchi
    Qian, Shiyou
    Yang, Dingyu
    Cao, Jian
    Xue, Guangtao
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2025, 19 (02)
  • [27] Deep transition network with gating mechanism for multivariate time series forecasting
    Yimeng Wang
    Shi Feng
    Bing Wang
    Jihong Ouyang
    Applied Intelligence, 2023, 53 : 24346 - 24359
  • [28] Connecting the Dots: Multivariate Time Series Forecasting with Graph Neural Networks
    Wu, Zonghan
    Pan, Shirui
    Long, Guodong
    Jiang, Jing
    Chang, Xiaojun
    Zhang, Chengqi
    KDD '20: PROCEEDINGS OF THE 26TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2020, : 753 - 763
  • [29] Multivariate Temporal Convolutional Network: A Deep Neural Networks Approach for Multivariate Time Series Forecasting
    Wan, Renzhuo
    Mei, Shuping
    Wang, Jun
    Liu, Min
    Yang, Fan
    ELECTRONICS, 2019, 8 (08)
  • [30] Hybrid Convolution Based Online Multivariate Time Series Forecasting Algorithm
    Wang, Jing
    Wang, Jiang
    Ding, Jianli
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT II, ICIC 2024, 2024, 14876 : 163 - 174