A multi-scale feature cross-dimensional interaction network for stereo image super-resolution

被引:0
作者
Zhang, Jingcheng [1 ]
Zhu, Yu [1 ]
Peng, Shengjun [3 ]
Niu, Axi [1 ]
Yan, Qingsen [1 ]
Sun, Jinqiu [2 ]
Zhang, Yanning [1 ]
机构
[1] Northwestern Polytech Univ, Sch Comp Sci, Xian 710072, Peoples R China
[2] Northwestern Polytech Univ, Sch Astronaut, Xian 710072, Peoples R China
[3] China Xian Satellite Control Ctr, Xian 710699, Peoples R China
基金
中国国家自然科学基金;
关键词
Stereo image super-resolution; Multi-scale; Feature fusion; Cross-dimensional attention;
D O I
10.1007/s00530-025-01714-8
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recently, stereo image super-resolution (SSR) has achieved impressive performance by leveraging both intra-view and inter-view information. However, existing SSR methods often rely on single-scale features for stereo image feature extraction and overlook multi-dimensional feature interactions, resulting in poor visual quality with unclear and insufficiently sharp reconstruction of details. To address these issues and achieve better performance for stereo image super-resolution, we propose a multi-scale feature cross-dimensional interaction network (MFCINet) for SSR. Specifically, to fully exploit intra-view information, we design multi-scale feature extraction blocks to capture abundant multi-scale texture patterns, including the Local Feature Extraction Block (LFEB), Mesoscale Feature Extraction Block (MFEB), and Global Feature Extraction Block (GFEB). We progressively fuse smaller-scale features with larger-scale features, utilizing the local texture information contained in the smaller-scale features to refine the global structure information of the larger-scale features. To explore richer interactions of complementary features, we introduce the Cross-dimensional Attention Interaction Block (CAIB), which calculates attention between complementary features across different spatial positions and channels, facilitating comprehensive interaction among complementary features across various dimensions. Extensive experiments and ablation studies demonstrate that MFCINet better leverages intra-view and inter-view information to reconstruct clear texture details, achieving competitive results and outperforming state-of-the-art methods.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] MFEN: Lightweight multi-scale feature extraction super-resolution network in embedded system
    Xiao, Hang
    Qin, Jiayi
    Jeon, Seunggil
    Yan, Binyu
    Yang, Xiaomin
    MICROPROCESSORS AND MICROSYSTEMS, 2022, 93
  • [32] Progressive Multi-Scale Fusion Network for Light Field Super-Resolution
    Zhang, Wei
    Ke, Wei
    Sheng, Hao
    Xiong, Zhang
    APPLIED SCIENCES-BASEL, 2022, 12 (14):
  • [33] Multi-scale Fractal Coding for Single Image Super-Resolution
    Xie, Wei
    Liu, Jiwei
    Shao, Lizhen
    Jing, Fengwei
    INTELLIGENT COMPUTING THEORY, 2014, 8588 : 425 - 434
  • [34] Single Image Super-Resolution Based on Multi-Scale Competitive Convolutional Neural Network
    Du, Xiaofeng
    Qu, Xiaobo
    He, Yifan
    Guo, Di
    SENSORS, 2018, 18 (03)
  • [35] Remote Sensing Image Super-Resolution via Multi-Scale Texture Transfer Network
    Wang, Yu
    Shao, Zhenfeng
    Lu, Tao
    Huang, Xiao
    Wang, Jiaming
    Chen, Xitong
    Huang, Haiyan
    Zuo, Xiaolong
    REMOTE SENSING, 2023, 15 (23)
  • [36] Single Image Super-Resolution via Multi-Scale Fusion Convolutional Neural Network
    Du, Xiaofeng
    He, Yifan
    Li, Jianmi
    Xie, Xiaozhu
    2017 IEEE 8TH INTERNATIONAL CONFERENCE ON AWARENESS SCIENCE AND TECHNOLOGY (ICAST), 2017, : 544 - 551
  • [37] Wide Weighted Attention Multi-Scale Network for Accurate MR Image Super-Resolution
    Wang, Haoqian
    Hu, Xiaowan
    Zhao, Xiaole
    Zhang, Yulun
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (03) : 962 - 975
  • [38] Non-linear perceptual multi-scale network for single image super-resolution
    Yang, Aiping
    Li, Leilei
    Wang, Jinbin
    Ji, Zhong
    Pang, Yanwei
    Cao, Jiale
    Wei, Zihao
    NEURAL NETWORKS, 2022, 152 : 201 - 211
  • [39] Efficient masked feature and group attention network for stereo image super-resolution
    Song, Jianwen
    Sowmya, Arcot
    Kato, Jien
    Sun, Changming
    IMAGE AND VISION COMPUTING, 2024, 151
  • [40] Separable feature complementary network with branch-wise and multi-scale spatial attention for lightweight image super-resolution
    Zhang, Wenming
    Han, Qiming
    Li, Yaqian
    Li, Haibin
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (02) : 1715 - 1724