Perturbation of Frames from the Weyl-Heisenberg Group and the Extended Affine Group

被引:0
作者
Jindal, Divya [1 ]
Jorgensen, Palle [2 ]
Vashisht, Lalit Kumar [1 ]
机构
[1] Univ Delhi, Dept Math, New Delhi 110007, Delhi, India
[2] Univ Iowa, Dept Math, Iowa City, IA USA
关键词
Frames; Gabor frames; Wavelet frames; Perturbation; Weyl-Heisenberg group; Extended affine group; STABILITY; REPRESENTATIONS;
D O I
10.1007/s11785-025-01675-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using a contraction between the affine group and the Weyl-Heisenberg group, we derive several new sufficient conditions, with explicit frame bounds, for perturbation of Gabor frames and wavelet frames. Firstly, we give perturbation of Gabor frames with respect to the translation parameter, modulation parameter, and window functions. An equivalent criteria for frame conditions in terms of a given frame and its perturbed sequence is given. We give necessary and sufficient conditions for the existence of wavelet frames from the extended affine group. Sufficient conditions for perturbation of frames from the extended affine group are derived. Finally, we give an interplay between perturbation of frames from the Weyl-Heisenberg group and extended affine group.
引用
收藏
页数:33
相关论文
共 35 条
  • [1] Time-Frequency Analysis of Biosignals A Wavelet Transform Overview
    Addison, Paul S.
    Walker, James
    Guido, Rodrigo C.
    [J]. IEEE ENGINEERING IN MEDICINE AND BIOLOGY MAGAZINE, 2009, 28 (05): : 14 - 29
  • [2] Perturbation of operators and applications to frame theory
    Cazassa, PG
    Christensen, O
    [J]. JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 1997, 3 (05) : 543 - 557
  • [3] Christensen O., 2016, An introduction to Frames and Riesz Bases, VSecond, DOI 10.1007/978-0-8176-8224-8
  • [4] Generalized coorbit theory, Banach frames, and the relation to α-modulation spaces
    Dahlke, Stephan
    Fornasier, Massimo
    Rauhut, Holger
    Steidl, Gabriele
    Teschke, Gerd
    [J]. PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2008, 96 : 464 - 506
  • [5] Stability of Gabor Frames Under Small Time Hamiltonian Evolutions
    de Gosson, Maurice A.
    Groechenig, Karlheinz
    Romero, Jose Luis
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 2016, 106 (06) : 799 - 809
  • [6] Deepshikha L.K., 2018, HOUSTON J MATH, V44, P887
  • [7] Deepshikha L. K., 2018, RESULTS MATH, V73, DOI DOI 10.1007/s00025-018-0843-4
  • [8] A CLASS OF NONHARMONIC FOURIER SERIES
    DUFFIN, RJ
    SCHAEFFER, AC
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1952, 72 (MAR) : 341 - 366
  • [9] ON THE STABILITY OF FRAMES AND RIESZ BASES
    FAVIER, SJ
    ZALIK, RA
    [J]. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 1995, 2 (02) : 160 - 173
  • [10] Grchenig K., 2001, FDN TIME FREQUENCY A, DOI [10.1007/978-1-4612-0003-1, DOI 10.1007/978-1-4612-0003-1]