Hybrid golden jackal and golden sine optimizer for tuning PID controllers

被引:1
作者
Mou, Kailong [1 ]
Yang, Ming [1 ]
Zhang, Mengjian [2 ]
Wang, Deguang [1 ]
机构
[1] Guizhou Univ, Sch Elect Engn, Guiyang 550025, Peoples R China
[2] South China Univ Technol, Sch Comp Sci & Engn, Guangzhou 510006, Peoples R China
基金
中国国家自然科学基金;
关键词
PID parameter tuning; Golden jackal optimization; Golden sine algorithm; Nonlinear parameter adaptation strategy; Hybrid algorithm; Quadrotor UAV trajectory tracking; SWARM INTELLIGENCE ALGORITHMS; DESIGN; SEARCH; SYSTEM; COLONY;
D O I
10.1038/s41598-024-73473-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In the domain of control engineering, effectively tuning the parameters of proportional-integral-derivative (PID) controllers has persistently posed a challenge. This study proposes a hybrid algorithm (HGJGSO) that combines golden jackal optimization (GJO) and golden sine algorithm (Gold-SA) for tuning PID controllers. To accelerate the convergence of GJO, a nonlinear parameter adaptation strategy is incorporated. The improved GJO is combined with Gold-SA, capitalizing on the expedited convergence speed offered by the improved GJO, coupled with the global optimization and precise search capabilities of Gold-SA. HGJGSO maximizes the strengths of two algorithms, facilitating a comprehensive and balanced exploration and exploitation. The effectiveness of HGJGSO is assessed through tuning the PID controllers for three typical systems. The results indicate that HGJGSO surpasses the comparison tuning methods. To evaluate the applicability of HGJGSO, it is used to tune the cascade PID controllers for trajectory tracking in a quadrotor UAV. The results demonstrate the superiority of HGJGSO in addressing practical challenges.
引用
收藏
页数:23
相关论文
共 56 条
[1]   PID control system analysis, design, and technology [J].
Ang, KH ;
Chong, G ;
Li, Y .
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2005, 13 (04) :559-576
[2]  
Bansal H.O., 2012, J. Control. Eng. Technol, V2, P168
[3]   A review of PID control, tuning methods and applications [J].
Borase, Rakesh P. ;
Maghade, D. K. ;
Sondkar, S. Y. ;
Pawar, S. N. .
INTERNATIONAL JOURNAL OF DYNAMICS AND CONTROL, 2021, 9 (02) :818-827
[4]   An adaptive deep reinforcement learning approach for MIMO PID control of mobile robots [J].
Carlucho, Ignacio ;
De Paula, Mariano ;
Acosta, Gerardo G. .
ISA TRANSACTIONS, 2020, 102 :280-294
[5]   Fuzzy PID controller: Design, performance evaluation, and stability analysis [J].
Carvajal, J ;
Chen, GR ;
Ogmen, H .
INFORMATION SCIENCES, 2000, 123 (3-4) :249-270
[6]   Decentralized PID neural network control for five degree-of-freedom active magnetic bearing [J].
Chen, Syuan-Yi ;
Lin, Faa-Jeng .
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2013, 26 (03) :962-973
[7]   A multi-strategy improved beluga whale optimization algorithm for constrained engineering problems [J].
Chen, Xinyi ;
Zhang, Mengjian ;
Yang, Ming ;
Wang, Deguang .
CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2024, 27 (10) :14685-14727
[8]  
Chien K.L., 1952, Trans ASME, V74, P175, DOI [DOI 10.1115/1.4015724, 10.1115/1.4015724]
[9]   Golden jackal optimization: A novel nature-inspired optimizer for engineering applications [J].
Chopra, Nitish ;
Ansari, Muhammad Mohsin .
EXPERT SYSTEMS WITH APPLICATIONS, 2022, 198
[10]  
Cohen G.H., 1953, Transactions of the ASME, V75, P827, DOI [DOI 10.1115/1.4015451, 10.1115/1.4015451]