URSIM for Meromorphic Functions in a non-Archimedean Field

被引:0
作者
An, Vu Hoai [1 ,2 ]
Chanthaphone, Phommavong [3 ]
机构
[1] Hai Duong Univ, Hai Duong, Vietnam
[2] Thang Long Inst Math & Appl Sci, Hanoi, Vietnam
[3] Thai Nguyen Univ Educ, Thai Nguyen, Vietnam
关键词
Non-Archimedean; meromorphic function; ignoring multiplicity; unique range sets; UNIQUENESS POLYNOMIALS; BI-URS; SETS;
D O I
10.1134/S2070046625010030
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb K$$\end{document} be an algebraically closed field of characteristic zero, complete with respect to a non-Archimedean absolute value. We first give a sufficient condition for a finite set \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S\subset {\mathbb K}$$\end{document} such that if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g $$\end{document} share \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S$$\end{document} ignoring multiplicity, then \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ f=g.$$\end{document} As consequences, we obtain a new class of unique range sets for non-Archimedean meromorphic functions ignoring multiplicity with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$14$$\end{document} elements. Our result improves and generalizes some previous results of Banerjee-Maity in [5], Hu-Yang in [10] and Escassut-Haddad-Vidal in [3].
引用
收藏
页码:28 / 41
页数:14
相关论文
共 18 条
[1]  
Banerjee A., 2022, Ukranian Math. J, V74, P1587
[2]   On the Extended Class of SUPM and Their Generating URSM Over Non-Archimedean Field [J].
Banerjee, Abhijit ;
Maity, Sayantan .
P-ADIC NUMBERS ULTRAMETRIC ANALYSIS AND APPLICATIONS, 2021, 13 (03) :175-185
[3]   P-ADIC NEVANLINNA THEOREM [J].
BOUTABAA, A .
MANUSCRIPTA MATHEMATICA, 1990, 67 (03) :251-269
[4]   On uniqueness of p-adic meromorphic functions [J].
Boutabaa, A ;
Escassut, A .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 126 (09) :2557-2568
[5]   Non-Archimedean Nevanlinna theory in several variables and the non-Archimedean Nevanlinna inverse problem [J].
Cherry, W ;
Ye, ZA .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 349 (12) :5043-5071
[6]   Uniqueness of non-Archimedean entire functions sharing sets of values counting multiplicity [J].
Cherry, W ;
Yang, CC .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 127 (04) :967-971
[7]   Urs, ursim, and non-urs for p-adic functions and polynomials [J].
Escassut, A ;
Haddad, L ;
Vidal, R .
JOURNAL OF NUMBER THEORY, 1999, 75 (01) :133-144
[8]   On uniqueness of meromorphic functions sharing finite sets [J].
Fujimoto, H .
AMERICAN JOURNAL OF MATHEMATICS, 2000, 122 (06) :1175-1203
[9]   Strong uniqueness polynomials of degree 6 and unique range sets for powers of meromorphic functions [J].
Ha Huy Khoai ;
Vu Hoai An ;
Nguyen Xuan Lai .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2018, 29 (05)
[10]  
Hu P. C., 2000, Mathematics and its Applications, DOI [10.1007/978-94-015-9415-8, DOI 10.1007/978-94-015-9415-8]