Reversible Angle Distortion-Dependent Electrochemical CO2 Reduction on Cobalt Phthalocyanine

被引:7
作者
Mei, Bingbao [1 ]
Mao, Jianing [2 ]
Liang, Zhaofeng [1 ]
Sun, Fanfei [1 ]
Yang, Shuai [3 ]
Li, Ji [4 ,5 ]
Ma, Jingyuan [1 ]
Song, Fei [1 ]
Jiang, Zheng [5 ]
机构
[1] Chinese Acad Sci, Shanghai Adv Res Inst, Shanghai Synchrotron Radiat Facil, Shanghai 201800, Peoples R China
[2] Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China
[3] ShanghaiTech Univ, Sch Phys Sci & Technol, Shanghai 201203, Peoples R China
[4] Zhejiang Inst Photoelect, Jinhua 321025, Peoples R China
[5] Univ Sci & Technol China, Natl Synchrotron Radiat Lab, Hefei 230026, Peoples R China
基金
中国国家自然科学基金; 上海市科技启明星计划;
关键词
RAY-EMISSION SPECTROSCOPY; ORGANIC FRAMEWORKS; SITES; ELECTROREDUCTION; NANOPARTICLES; CATALYSTS; EXCHANGE; CARBON;
D O I
10.1021/jacs.4c14409
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Deducing the local electronic and atomic structural changes in active sites during electrochemical carbon dioxide reduction is essential for elucidating the intrinsic mechanisms and developing highly active catalysts that are stable for a long duration. Herein, utilizing operando valence-to-core X-ray emission spectroscopy and high energy-resolution fluorescence detected X-ray absorption near-edge structure, combined with spectroscopic calculations, the atomic and electronic structure evolutions of the model cobalt phthalocyanine (CoPc) were quantitatively elucidated. Under real reaction conditions, CoPc undergoes reversible angle distortion while maintaining a constant metal-ligand bond length, causing changes in the energy levels of split d orbitals and electron density of molecular orbitals. The angle distortion further influences intrinsic interactions among the ligands, intermediates, and metal centers. The reversible change in the bond angle with the CO Faraday efficiency was also determined, demonstrating the robustness. The demonstrated findings serve as an important contribution to determine the structure-performance relationship of CoPc which enlightens the further rational design of atomically dispersed site catalysts with high activity and to emphasize the capabilities of the high energy resolution X-ray spectroscopy toward analyzing metal-implanted N-doped carbon catalysts.
引用
收藏
页码:5819 / 5827
页数:9
相关论文
共 50 条
[31]   Curvature-Dependent Selectivity of CO2 Electrocatalytic Reduction on Cobalt Porphyrin Nanotubes [J].
Zhu, Guizhi ;
Li, Yawei ;
Zhu, Haiyan ;
Su, Haibin ;
Chan, Siew Hwa ;
Sun, Qiang .
ACS CATALYSIS, 2016, 6 (09) :6294-6301
[32]   Controllable dispersion of cobalt phthalocyanine molecules on graphene oxide for enhanced electrocatalytic reduction of CO2 to CO [J].
Huang, Weifeng ;
Li, Junqiang ;
Xu, Xiao ;
Cao, Aihui ;
He, Ying ;
SUn, Miao ;
Kang, Longtian .
NEW JOURNAL OF CHEMISTRY, 2022, 46 (15) :7153-7160
[33]   Reaction environment Optimization with Janus electrode in CO2 electrochemical reduction to CO [J].
Chao, Linjie ;
Lin, Jing ;
Hu, Qing ;
Yan, Shenglin ;
Mahyoub, Samah A. ;
Wei, Zhihang ;
Wu, Yurong ;
Cheng, Zhenmin .
SEPARATION AND PURIFICATION TECHNOLOGY, 2025, 362
[34]   LCA of electrochemical reduction of CO2 to ethylene [J].
Khoo, Hsien H. ;
Halim, Iskandar ;
Handoko, Albertus D. .
JOURNAL OF CO2 UTILIZATION, 2020, 41
[35]   Electrochemical CO2 Reduction by Cobalt(II)2,9,16,23-tetra(amino)phthalocyanine: Enhancement Effect of Active Sites toward Methanol Formation [J].
Guo, Tianxiang ;
Wang, Xilai ;
Ma, Changxin ;
Fu, Zhixiang ;
Xing, Xiaodong ;
Bedane, Alemayehu Hailu .
ENERGY & FUELS, 2024, 38 (17) :16638-16656
[36]   Temperature dependent product distribution of electrochemical CO2 reduction on CoTPP/MWCNT composite [J].
Hossain, M. N. ;
Prslja, P. ;
Flox, C. ;
Muthuswamy, N. ;
Sainio, J. ;
Kannan, A. M. ;
Suominen, M. ;
Lopez, N. ;
Kallio, T. .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2022, 304
[37]   Influence of Carbon Support on the Pyrolysis of Cobalt Phthalocyanine for the Efficient Electroreduction of CO2 [J].
Hamonnet, Johan ;
Bennington, Michael S. ;
Johannessen, Bernt ;
Hamilton, Jessica ;
Brooksby, Paula A. ;
Brooker, Sally ;
Golovko, Vladimir ;
Marshall, Aaron T. .
ACS CATALYSIS, 2022, 12 (23) :14571-14581
[38]   Selective electrochemical CO2 reduction on Cu-Pd heterostructure [J].
Xie, Jia-Fang ;
Chen, Jie-Jie ;
Huang, Yu-Xi ;
Zhang, Xing ;
Wang, Wei-Kang ;
Huang, Gui-Xiang ;
Yu, Han-Qing .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2020, 270
[39]   The anolyte matters: Towards highly efficient electrochemical CO2 reduction [J].
Jiang, Hao ;
Wang, Lizhang ;
Gao, Bai ;
Li, Yiran ;
Guo, Yadan ;
Zhuo, Mengning ;
Sun, Kaixuan ;
Lu, Binyu ;
Jia, Meiyu ;
Yu, Xiaoxia ;
Wang, Huidong ;
Li, Yongge .
CHEMICAL ENGINEERING JOURNAL, 2021, 422 (422)
[40]   Role of Subsurface Oxygen on Cu Surfaces for CO2 Electrochemical Reduction [J].
Fields, Meredith ;
Hong, Xin ;
Norskov, Jens K. ;
Chan, Karen .
JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (28) :16209-16215