Probing the orthogonality and robustness of the mammalian RNA-binding protein Musashi-1 in Escherichia coli

被引:0
作者
Dolcemascolo, Roswitha [1 ]
Ruiz, Raul [1 ]
Baldanta, Sara [1 ]
Goiriz, Lucas [1 ,2 ]
Heras-Hernandez, Maria [1 ]
Montagud-Martinez, Roser [1 ]
Rodrigo, Guillermo [1 ]
机构
[1] Univ Valencia, Inst Integrat Syst Biol I2SysBio, CSIC, Paterna 46980, Spain
[2] Univ Politecn Valencia, Pure & Appl Math Univ Res Inst IUMPA, Valencia 46022, Spain
来源
JOURNAL OF BIOLOGICAL ENGINEERING | 2024年 / 18卷 / 01期
基金
欧盟地平线“2020”;
关键词
Post-transcriptional regulation; RNA recognition motif; Synthetic biology; Systems biology; SYNTHETIC BIOLOGY; GENE-EXPRESSION; TRANSLATION; CIRCUITS; MOTIF;
D O I
10.1186/s13036-024-00448-x
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
RNA recognition motifs (RRMs) are widespread RNA-binding protein domains in eukaryotes, which represent promising synthetic biology tools due to their compact structure and efficient activity. Yet, their use in prokaryotes is limited and their functionality poorly characterized. Recently, we repurposed a mammalian Musashi protein containing two RRMs as a translation regulator in Escherichia coli. Here, employing high-throughput RNA sequencing, we explored the impact of Musashi expression on the transcriptomic and translatomic profiles of E. coli, revealing certain metabolic interference, induction of post-transcriptional regulatory processes, and spurious protein-RNA interactions. Engineered Musashi protein mutants displayed compromised regulatory activity, emphasizing the importance of both RRMs for specific and sensitive RNA binding. We found that a mutation known to impede allosteric regulation led to similar translation control activity. Evolutionary experiments disclosed a loss of function of the synthetic circuit in about 40 generations, with the gene coding for the Musashi protein showing a stability comparable to other heterologous genes. Overall, this work expands our understanding of RRMs for post-transcriptional regulation in prokaryotes and highlight their potential for biotechnological and biomedical applications.
引用
收藏
页数:11
相关论文
共 42 条
  • [1] Genetic circuit characterization by inferring RNA polymerase movement and ribosome usage
    Borujeni, Amin Espah
    Zhang, Jing
    Doosthosseini, Hamid
    Nielsen, Alec A. K.
    Voigt, Christopher A.
    [J]. NATURE COMMUNICATIONS, 2020, 11 (01)
  • [2] A universal strategy for regulating mRNA translation in prokaryotic and eukaryotic cells
    Cao, Jicong
    Arha, Manish
    Sudrik, Chaitanya
    Mukherjee, Abhirup
    Wu, Xia
    Kane, Ravi S.
    [J]. NUCLEIC ACIDS RESEARCH, 2015, 43 (08) : 4353 - 4362
  • [3] The Gene Ontology Resource: 20 years and still GOing strong
    Carbon, S.
    Douglass, E.
    Dunn, N.
    Good, B.
    Harris, N. L.
    Lewis, S. E.
    Mungall, C. J.
    Basu, S.
    Chisholm, R. L.
    Dodson, R. J.
    Hartline, E.
    Fey, P.
    Thomas, P. D.
    Albou, L. P.
    Ebert, D.
    Kesling, M. J.
    Mi, H.
    Muruganujian, A.
    Huang, X.
    Poudel, S.
    Mushayahama, T.
    Hu, J. C.
    LaBonte, S. A.
    Siegele, D. A.
    Antonazzo, G.
    Attrill, H.
    Brown, N. H.
    Fexova, S.
    Garapati, P.
    Jones, T. E. M.
    Marygold, S. J.
    Millburn, G. H.
    Rey, A. J.
    Trovisco, V.
    dos Santos, G.
    Emmert, D. B.
    Falls, K.
    Zhou, P.
    Goodman, J. L.
    Strelets, V. B.
    Thurmond, J.
    Courtot, M.
    Osumi-Sutherland, D.
    Parkinson, H.
    Roncaglia, P.
    Acencio, M. L.
    Kuiper, M.
    Laegreid, A.
    Logie, C.
    Lovering, R. C.
    [J]. NUCLEIC ACIDS RESEARCH, 2019, 47 (D1) : D330 - D338
  • [4] Neurodevelopmental protein Musashi-1 interacts with the Zika genome and promotes viral replication
    Chavali, Pavithra L.
    Stojic, Lovorka
    Meredith, Luke W.
    Joseph, Nimesh
    Nahorski, Michael S.
    Sanford, Thomas J.
    Sweeney, Trevor R.
    Krishna, Ben A.
    Hosmillo, Myra
    Firth, Andrew E.
    Bayliss, Richard
    Marcelis, Carlo L.
    Lindsay, Susan
    Goodfellow, Ian
    Woods, C. Geoffrey
    Gergely, Fanni
    [J]. SCIENCE, 2017, 357 (6346) : 83 - 88
  • [5] Chothani Sonia, 2019, Curr Protoc Mol Biol, V129, pe108, DOI 10.1002/cpmb.108
  • [6] Allosteric inhibition of a stem cell RNA-binding protein by an intermediary metabolite
    Clingman, Carina C.
    Deveau, Laura M.
    Hay, Samantha A.
    Genga, Ryan M.
    Shandilya, Shivender M. D.
    Massi, Francesca
    Ryder, Sean P.
    [J]. ELIFE, 2014, 3
  • [7] Precise transcript targeting by CRISPR-Csm complexes
    Colognori, David
    Trinidad, Marena
    Doudna, Jennifer A. A.
    [J]. NATURE BIOTECHNOLOGY, 2023, 41 (09) : 1256 - +
  • [8] Repurposing the mammalian RNA-binding protein Musashi-1 as an allosteric translation repressor in bacteria
    Dolcemascolo, Roswitha
    Heras-Hernandez, Maria
    Goiriz, Lucas
    Montagud-Martinez, Roser
    Requena-Menendez, Alejandro
    Ruiz, Raul
    Perez-Rafols, Anna
    Higuera-Rodriguez, R. Anahi
    Perez-Ropero, Guillermo
    Vranken, Wim F.
    Martelli, Tommaso
    Kaiser, Wolfgang
    Buijs, Jos
    Rodrigo, Guillermo
    [J]. ELIFE, 2024, 12
  • [9] Designing Biological Circuits: Synthetic Biology Within the Operon Model and Beyond
    English, Max A.
    Gayet, Raphael V.
    Collins, James J.
    [J]. ANNUAL REVIEW OF BIOCHEMISTRY, VOL 90, 2021, 2021, 90 : 221 - 244
  • [10] Hoffmann F, 2004, ADV BIOCHEM ENG BIOT, V89, P73