On a general class of geometric constants and normal structure in Banach spaces

被引:0
作者
Dinarvand, Mina [1 ]
机构
[1] Kharazmi Univ, Dept Math, Tehran 1561836314, Iran
关键词
Normal structure; uniform normal structure; geometric constants; VON-NEUMANN-JORDAN; FIXED-POINT PROPERTY; UNIFORM NORMAL STRUCTURE; PROPERTIES SUFFICIENT; TRIANGLES; JAMES; COEFFICIENT; SMOOTHNESS; SEMICIRCLE;
D O I
10.1007/s11784-025-01165-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we establish the lower bounds for the weakly convergent sequence coefficient WCS(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {WCS}(X)$$\end{document} of a Banach space X, in terms of the family of geometric constants C lambda,p(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{\lambda ,p}(X)$$\end{document}, the coefficient of weak orthogonality mu(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu (X)$$\end{document}, and the generalized Garc & iacute;a-Falset coefficient R(1, X). By means of these bounds, we identify some geometrical properties implying normal structure. Moreover, some sufficient conditions which imply uniform normal structure are presented. Our results significantly generalize and improve many known results in the literature.
引用
收藏
页数:19
相关论文
共 45 条
  • [1] Wheeling around von Neumann-Jordan constant in Banach spaces
    Alonso, J.
    Martin, P.
    Papini, P. L.
    [J]. STUDIA MATHEMATICA, 2008, 188 (02) : 135 - 150
  • [2] Geometric mean and triangles inscribed in a semicircle in Banach spaces
    Alonso, Javier
    Llorens-Fuster, Enrique
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 340 (02) : 1271 - 1283
  • [3] On Some Geometric Constants in Banach Spaces
    Amini-Harandi, A.
    Rahimi, M.
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2019, 16 (04)
  • [4] Ayerbe-Toledano J., 1997, Operator Theory: Advances and Applications, V99
  • [5] Triangles inscribed in a semicircle, in Minkowski planes, and in normed spaces
    Baronti, M
    Casini, E
    Papini, PL
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 252 (01) : 124 - 146
  • [6] TRIANGLES, PARAMETERS, MODULUS OF SMOOTHNESS IN NORMED SPACES
    Baronti, Marco
    Papini, Pier Luigi
    [J]. MATHEMATICAL INEQUALITIES & APPLICATIONS, 2016, 19 (01): : 197 - 207
  • [7] Benavides TD, 1996, HOUSTON J MATH, V22, P835
  • [8] Brodskii M. S., 1948, Dokl. Akad. Nauk SSSR, V59, P837
  • [9] NORMAL STRUCTURE COEFFICIENTS FOR BANACH-SPACES
    BYNUM, WL
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 1980, 86 (02) : 427 - 436
  • [10] Some estimates for the weakly convergent sequence coefficient in Banach spaces
    Casini, Emanuele
    Papini, Pier Luigi
    Saejung, Satit
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 346 (01) : 177 - 182